- #1
Hall
- 351
- 88
- Homework Statement
- $$
5x +2y -6z +2u =-1$$
$$
x- y +z -u =-2$$
- Relevant Equations
- Gauss-Jordan Elimination.
(I don't know how to make augmented matrices in latex, so what I would do is to use an equal to sign)
$$
\begin{bmatrix}
5 &2&-6&2 \\
1&-1&1&-1 \\
\end{bmatrix}
= \begin{bmatrix}
-1\\
-2\\
\end{bmatrix}$$
## R_1 \to R_1 +2R_2##
$$
\begin{bmatrix}
7 &0&-4&0\\
1&-1&1&-1\\
\end{bmatrix}
= \begin{bmatrix}
-5\\
-2
\end{bmatrix} $$
Now, I would like to stop the Elimination process and put the variable in:
## z = (7x+5)/4##
##x -y +(7x+5)/4 -u =-2##
How to go further on? And what the question meant by "all the solutions"? Did they mean the general solution?
$$
\begin{bmatrix}
5 &2&-6&2 \\
1&-1&1&-1 \\
\end{bmatrix}
= \begin{bmatrix}
-1\\
-2\\
\end{bmatrix}$$
## R_1 \to R_1 +2R_2##
$$
\begin{bmatrix}
7 &0&-4&0\\
1&-1&1&-1\\
\end{bmatrix}
= \begin{bmatrix}
-5\\
-2
\end{bmatrix} $$
Now, I would like to stop the Elimination process and put the variable in:
## z = (7x+5)/4##
##x -y +(7x+5)/4 -u =-2##
How to go further on? And what the question meant by "all the solutions"? Did they mean the general solution?