Determine ## \beta ## as a function of ##\theta## linkage

In summary, the function ##\beta## is a trigonometric mess that can be simplified by drawing the other diagonal of the quadrilateral.
  • #1
erobz
Gold Member
3,938
1,679
I 've been trying find ##\beta## as a function of ##\theta## for this linkage. It's quite the trigonometric mess.

1676847859269.png

Start with the Law of Sines:

$$ \frac{\sin \beta}{x} = \frac{\sin \varphi}{R} \implies \boxed{ x = R \frac{\sin \beta}{\sin \varphi} \tag{1} }$$

Relating angles:

$$ \theta + \alpha + \varphi = \frac{\pi}{2} \implies \boxed{ \alpha = \frac{\pi}{2} -( \theta+\varphi) \tag{2} } $$

Applying Law of Cosines ( for each triangle):

$$ \boxed{ R^2 = w^2 + x^2 - 2 w x \cos \varphi \tag{3}}$$

$$ \boxed{ l^2 = r^2 + x^2 - 2 r x \cos \alpha \tag{4}}$$

Sub ##(1) \to (3)## to find ##\sin \varphi## in terms of ##\sin \beta##:

$$ \left( \left( R^2-w^2\right)^2+ 4 w^2 R^2 \sin^2 \beta \right) \sin^4 \varphi - \left( 2R^2\left(R^2-w^2\right) + 4 w^2 R^2 \right) \sin^2 \beta \sin^2 \varphi + R^4 \sin^4 \beta = 0 \tag{5} $$

Eq ##(5)## can be solved for ##\sin \varphi## using the quadratic formula with the substitution ## u = \sin^2 \varphi ##:

## a = \left( \left( R^2-w^2\right)^2+ 4 w^2 R^2 \sin^2 \beta \right) ##

## b = - \left( 2R^2\left(R^2-w^2\right) + 4 w^2 R^2 \right) \sin^2 \beta ##

##c = R^4 \sin^4 \beta##

It follows that:

$$ \boxed{ \sin \varphi = \sqrt{ \frac{-b \pm \sqrt{b^2 - 4ac} }{2a} } \tag{6} } $$

Now, if we return to ##(4)## substituting ##(1)## and the identity ##\cos \alpha = \sin ( \theta+ \varphi)##:

$$ l^2 = r^2 + \frac{R^2 \sin^2 \beta}{ \sin^2 \varphi}- 2 r \frac{R \sin \beta}{ \sin \varphi } \sin ( \theta + \varphi) $$

Then applying the sum-difference identity for ##\sin( \theta + \varphi )##:

$$\boxed{ l^2 = r^2 + \frac{R^2 \sin^2 \beta}{ \sin^2 \varphi}- 2 r \frac{R \sin \beta}{ \sin \varphi } \left( \sin \theta \cos \varphi + \cos \theta \sin \varphi \right) \tag{7} }$$

From this point I can use a similar trick as in ##5## to get a solution for either ##\sin \theta , \cos \theta ## in terms of ##\sin \beta ## and all the constants.

It's seeming to be a real mess. Is it really this complex of a function - Have I messed up?
 
Mathematics news on Phys.org
  • #2
I think you may find it easier to solve if you draw the other diagonal of the quadrilateral instead of the one labelled x. That diagonal goes from the top of the yellow line r to the vertex of the angle ##\beta##. Call its length y.
Then, since you know the angle between r and w is ##\pi/2 - \theta## you can use the cosine rule for triangle r-y-w to get the length y in terms of ##r,w,\cos(\pi/2-\theta)##, ie ##r,w,\sin\theta##.
Next, use the sine rule for the same triangle to get the angle ##\gamma## in the bottom-right corner of that triangle. That forms part of the angle ##\beta##.
The other part of ##\beta## is the bottom-right angle of the triangle l-R-y. You now know all three sides of that triangle, so you can apply the cosine law to that bottom right angle to get an expression for it in terms of ##l,R,y##.

I don't know for sure that it's any less messy than what you had but since it really only has three steps: cosine rule, sine rule, cosine rule, I think it's likely to.
 
  • Like
Likes erobz
  • #3
andrewkirk said:
I think you may find it easier to solve if you draw the other diagonal of the quadrilateral instead of the one labelled x. That diagonal goes from the top of the yellow line r to the vertex of the angle ##\beta##. Call its length y.
Then, since you know the angle between r and w is ##\pi/2 - \theta## you can use the cosine rule for triangle r-y-w to get the length y in terms of ##r,w,\cos(\pi/2-\theta)##, ie ##r,w,\sin\theta##.
Next, use the sine rule for the same triangle to get the angle ##\gamma## in the bottom-right corner of that triangle. That forms part of the angle ##\beta##.
The other part of ##\beta## is the bottom-right angle of the triangle l-R-y. You now know all three sides of that triangle, so you can apply the cosine law to that bottom right angle to get an expression for it in terms of ##l,R,y##.

I don't know for sure that it's any less messy than what you had but since it really only has three steps: cosine rule, sine rule, cosine rule, I think it's likely to.
Yeah, it does appear to be the elegant route:

$$ \beta = \arcsin\left( \frac{ r \cos \theta }{ \sqrt{ r^2+w^2-2rw \sin \theta} } \right) + \arccos\left( \frac{ r^2 +w^2+R^2-l^2-2rw \sin \theta }{ \sqrt{ r^2+w^2-2rw \sin \theta} } \right) $$

Simple change of perspective, dramatic effects...SMH. Thanks for the tip!
 

FAQ: Determine ## \beta ## as a function of ##\theta## linkage

What is the significance of determining β as a function of θ in linkage analysis?

Determining β as a function of θ is crucial in linkage analysis as it helps in understanding the relationship between genetic markers and traits. It allows researchers to quantify how changes in one variable (θ) affect another variable (β), which can lead to insights into genetic inheritance patterns and the mapping of traits to specific genes.

How do I derive the function β(θ) from experimental data?

To derive the function β(θ) from experimental data, you typically start by collecting data on the variables of interest under controlled conditions. Then, you can use statistical methods such as regression analysis to model the relationship between β and θ. This involves fitting a suitable mathematical function to the data points and validating the model using goodness-of-fit tests.

What mathematical models are commonly used to express β as a function of θ?

Common mathematical models used to express β as a function of θ include linear models, polynomial models, and logistic regression models. The choice of model depends on the nature of the data and the expected relationship between the variables. Non-linear models may also be employed if the relationship is complex.

What are the potential challenges in estimating β as a function of θ?

Challenges in estimating β as a function of θ can include multicollinearity among predictors, measurement errors in the data, and model overfitting. Additionally, if the underlying relationship is non-linear or if there are confounding variables not accounted for, it can lead to inaccurate estimates of β.

How can the results of β(θ) be applied in genetic research?

The results of β(θ) can be applied in genetic research to identify potential genetic markers associated with specific traits, assist in the design of breeding programs, and improve our understanding of genetic diseases. By establishing a clear relationship between genetic variation and phenotypic traits, researchers can make informed decisions in areas such as personalized medicine and conservation genetics.

Similar threads

Replies
4
Views
1K
Replies
1
Views
1K
Replies
2
Views
806
Replies
1
Views
7K
Replies
4
Views
2K
Replies
12
Views
827
Back
Top