- #1
chwala
Gold Member
- 2,756
- 390
- Homework Statement
- Determine the convergence or divergence of the sequence ##a_n= \left[\dfrac {\ln (n)^2}{n}\right]##
- Relevant Equations
- convergence knowledge
##a_n= \left[\dfrac {\ln (n)^2}{n}\right]##
We may consider a function of a real variable. This is my approach;
##f(x) =\left[\dfrac {\ln (x)^2}{x}\right]##
Applying L'Hopital's rule we shall have;
##\displaystyle\lim_ {x\to\infty} \left[\dfrac {\ln (x)^2}{x}\right]=\lim_ {x\to\infty}\left[ \dfrac {2}{x}\right]=0##
because ##f(n)=a_n## for every positive integer ##n##, then we may conclude that the sequence converges to ##0##.
I would appreciate any insight on this...cheers.
We may consider a function of a real variable. This is my approach;
##f(x) =\left[\dfrac {\ln (x)^2}{x}\right]##
Applying L'Hopital's rule we shall have;
##\displaystyle\lim_ {x\to\infty} \left[\dfrac {\ln (x)^2}{x}\right]=\lim_ {x\to\infty}\left[ \dfrac {2}{x}\right]=0##
because ##f(n)=a_n## for every positive integer ##n##, then we may conclude that the sequence converges to ##0##.
I would appreciate any insight on this...cheers.
Last edited: