- #1
zenterix
- 702
- 84
- Homework Statement
- Show that if ##h(t)=f(t)*g(t)## then ##H(s)=F(s)G(s)##.
- Relevant Equations
- where capital letters represent the Laplace transform of the lowercase variables.
$$h(t)=f(t)*g(t)=\int_0^t f(\tau)g(t-\tau)d\tau=\int_0^t g(\tau)f(t-\tau)d\tau\tag{1}$$
The Laplace transform is
$$H(s)=\int_0^\infty h(t)e^{-st}dt=\int_0^\infty\left ( \int_0^t g(\tau)f(t-\tau)d\tau\right )e^{-st}dt\tag{2}$$
The Laplace transforms of $f$ and $g$ are
$$F(s)=\int_0^\infty f(x)e^{-sx}dx\tag{3}$$
$$G(s)=\int_0^\infty g(y)e^{-sy}dy\tag{4}$$
Now let's check what ##F(s)G(s)## is.
$$F(s)G(s)=\int_0^\infty\int_0^\infty f(x)e^{-sx}g(y)e^{-sy}dxdy\tag{5}$$
We now make a change of variables.
$$x=X(t,\tau)=t-\tau$$
$$y=Y(t,\tau)=\tau$$
The Jacobian of this mapping is
$$J(\tau,t)=\begin{vmatrix} -1&1\\1&0\end{vmatrix}=-1$$
and so
$$|J(\tau,t)|=1$$
The double integral (5) becomes
$$\int\int g(\tau)f(t-\tau)e^{-st}d\tau dt\tag{6}$$
My question is: how do I find the limits of integration in (6)? What is a good strategy for reasoning about such a task?
The Laplace transform is
$$H(s)=\int_0^\infty h(t)e^{-st}dt=\int_0^\infty\left ( \int_0^t g(\tau)f(t-\tau)d\tau\right )e^{-st}dt\tag{2}$$
The Laplace transforms of $f$ and $g$ are
$$F(s)=\int_0^\infty f(x)e^{-sx}dx\tag{3}$$
$$G(s)=\int_0^\infty g(y)e^{-sy}dy\tag{4}$$
Now let's check what ##F(s)G(s)## is.
$$F(s)G(s)=\int_0^\infty\int_0^\infty f(x)e^{-sx}g(y)e^{-sy}dxdy\tag{5}$$
We now make a change of variables.
$$x=X(t,\tau)=t-\tau$$
$$y=Y(t,\tau)=\tau$$
The Jacobian of this mapping is
$$J(\tau,t)=\begin{vmatrix} -1&1\\1&0\end{vmatrix}=-1$$
and so
$$|J(\tau,t)|=1$$
The double integral (5) becomes
$$\int\int g(\tau)f(t-\tau)e^{-st}d\tau dt\tag{6}$$
My question is: how do I find the limits of integration in (6)? What is a good strategy for reasoning about such a task?