I Determine Scaling Dimension of Field Theory

ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,098
Reaction score
1,385
It is given that a theory is invariant under the length scaling:\begin{align*}
x &\rightarrow \lambda x \\
\phi(x) &\rightarrow \lambda^{-D} \phi(\lambda^{-1} x)
\end{align*}for some ##D## to be determined. The action of a real scalar field is here:\begin{align*}
S = \int d^4 x \dfrac{1}{2}\partial_{\mu} \phi \partial^{\mu} \phi - \dfrac{1}{2}m^2 \phi^2 -g\phi^p
\end{align*}Since ##\partial_{\mu} = \frac{\partial x'^{\nu}}{\partial x^{\mu}} \partial'_{\nu} = {(\Lambda^{-1})^{\nu}}_{\mu} \partial'_{\nu}## then would I be correct in thinking that the derivative of the field transforms as:\begin{align*}
\partial_{\mu} \phi(x) \rightarrow \partial_{\mu} \phi'(x) &= \lambda^{-D} \partial_{\mu} \phi(\lambda^{-1} x) \\
&= \lambda^{-D} {(\Lambda^{-1})^{\nu}}_{\mu} \partial'_{\nu} \phi(x')
\end{align*}so the derivative term in the action transforms as \begin{align*}
(\partial_{\mu} \phi)^2 &\rightarrow \lambda^{-2D} {(\Lambda^{-1})^{\nu}}_{\mu} {\Lambda^{\mu}}_{\rho} (\partial'_{\nu} \phi(x'))( \partial'^{\rho} \phi(x')) \\
&= \lambda^{-2D} (\partial'_{\mu} \phi(x'))^2
\end{align*}Meanwhile ##d^4 x = \lambda^{-4} d^4 x'##, and this would imply scale invariance when ##D=-2##? That feels wrong and I worry that I have transformed the wrong things.
 
Physics news on Phys.org
It's much simpler. For the scale transformation to be a symmetry, it's sufficient that the action is invariant. Now start with the massless free field,
$$S_0=\int \mathrm{d}^4 x \frac{1}{2} (\partial_{\mu} \phi) (\partial^{\mu} \phi).$$
Since ##\mathrm{d}^4 x \rightarrow \lambda^4 \mathrm{d}^4 x## and ##\partial_{\mu} \rightarrow \frac{1}{\lambda} \partial_{\mu}##, you must have ##D=1## to get ##S_0## invariant.

Then you see that the mass term is "forbidden" by the symmetry, because ##\mathrm{d}^4 x m^2 \phi^2## is not invariant. This is no surprise, because ##m## is a dimensionful parameter, which breaks scale invariance to begin with.

For the interaction term ##\mathrm{d}^4 x \phi^p## must be invariant, and thus ##p=4##. Indeed, only for ##p=4## the coupling constant ##g## is dimensionless too.

So the only allowed theory of this kind is a massless field ##\phi## with a ##\phi^4## interaction.

Some further ideas to think about:

(a) What's the Noether current of the scale symmetry?

(b) If you quantize it, you have to renormalize this massless (!) field theory, and then what happens with scale invariance?
 
  • Love
Likes ergospherical
I was thinking about the two questions earlier, I wonder if you can guide me a little since this is new material. What I understand is that if the Lagrangian varies by a total derivative ##\delta \mathcal{L} = \partial_{\mu} F^{\mu}## under a variation ##\delta \phi_a(x) = X_a (\phi)## of the fields, then one obtains a Noether current ##j^{\mu} = \frac{\partial \mathcal{L}}{\partial \phi_{a,\mu}} X_a(\phi) - F^{\mu}(\phi)## satisfying ##\nabla \cdot j = 0##.

For this problem, is it correct to proceed as follows? I will put ##\lambda = 1+ \epsilon## where ##\epsilon## is a small positive or negative number, then write\begin{align*}
\tilde{\phi}(x) = \lambda^{-1} \phi(\lambda^{-1}x) &= (1 - \epsilon + O(\epsilon^2))\phi((1- \epsilon) x + O(\epsilon^2 x^2)) \\
&= (1 - \epsilon + O(\epsilon^2)) (\phi(x) - \epsilon x^{\nu} \phi_{,\nu}(x) + O(\epsilon^2 x^2) ) \\
&= \phi(x) - \epsilon \phi(x) - \epsilon x^{\nu} \phi_{,\nu}(x)
\end{align*}Then ##\delta \phi = - \epsilon (\phi + x^{\nu} \phi_{,\nu})##. For ##\phi_{,\mu}## I write\begin{align*}
\delta \phi_{,\mu} &= -\epsilon \partial_{\mu}(\phi + x^{\nu} \phi_{,\nu}) \\
&= - \epsilon \phi_{,\mu} - \epsilon \partial_{\mu}(x^{\nu} \phi_{,\nu}) \\
&= - \epsilon \phi_{,\mu} - \epsilon \phi_{,\mu} - x^{\nu} \phi_{,\nu \mu} \\
&= -\epsilon(2\phi_{,\mu} + x^{\nu} \phi_{,\nu \mu})
\end{align*}I write for the Lagrangian,\begin{align*}
\mathcal{L} = \dfrac{1}{2} \phi_{,\mu} \phi^{,\mu} -g \phi^4
\end{align*}from which follows ##\frac{\partial \mathcal{L}}{\partial \phi_{,\mu}} = \phi^{,\mu}## and ##\frac{\partial \mathcal{L}}{\partial \phi} = -4g\phi^3##, so that\begin{align*}
\delta \mathcal{L} &= -\epsilon \phi^{,\mu}(2\phi_{,\mu} + x^{\nu} \phi_{,\nu \mu}) + 4 g \epsilon \phi^3 (\phi + x^{\nu} \phi_{,\nu}) \\
&= -4\epsilon( \frac{1}{2} \phi^{,\mu} \phi^{,\mu} - g \phi^4) - 4\epsilon x^{\nu} (\frac{1}{4}\phi^{,\mu} \phi_{,\nu \mu} - g \phi^3 \phi_{,\nu}) \\
&= -4 \epsilon \left[ \mathcal{L} + x^{\nu} (\frac{1}{4}\phi^{,\mu} \phi_{,\nu \mu} - g \phi^3 \phi_{,\nu}) \right] \\
&= -4 \epsilon \left[ \mathcal{L} + x^{\nu} \dfrac{\partial}{\partial x^{\nu}} (\frac{1}{2}\phi^{,\mu} \phi_{,\mu} - \dfrac{1}{4}g \phi^4) \right] \\
\end{align*}which is almost ##- 4\epsilon \partial_{\nu}(x^{\nu} \mathcal{L})## but fails because of the factor of ##1/4## in front of the ##g\phi^4## term...
 
Last edited:
Looks good (though I haven't checked the calculation in dateail). But now you also have to take into account that you have to express ##\mathrm{d}^4 x'## through ##\mathrm{d}^4 x## in the action integral, i.e., there's an additional contribution from the corresponding Jacobian, which you also get by expanding to first order in ##\epsilon##.
 
  • Like
Likes ergospherical
I asked a question here, probably over 15 years ago on entanglement and I appreciated the thoughtful answers I received back then. The intervening years haven't made me any more knowledgeable in physics, so forgive my naïveté ! If a have a piece of paper in an area of high gravity, lets say near a black hole, and I draw a triangle on this paper and 'measure' the angles of the triangle, will they add to 180 degrees? How about if I'm looking at this paper outside of the (reasonable)...
Thread 'Relativity of simultaneity in actuality'
I’m attaching two figures from the book, Basic concepts in relativity and QT, by Resnick and Halliday. They are describing the relativity of simultaneity from a theoretical pov, which I understand. Basically, the lightning strikes at AA’ and BB’ can be deemed simultaneous either in frame S, in which case they will not be simultaneous in frame S’, and vice versa. Only in one of the frames are the two events simultaneous, but not in both, and this claim of simultaneity can be done by either of...

Similar threads

Replies
7
Views
1K
Replies
9
Views
1K
Replies
2
Views
1K
Replies
0
Views
1K
Back
Top