- #1
rayne1
- 32
- 0
Determine the images of functions f: R -> R defined as follows:
a) f(x) = x^2/(1+x^2)
b) f(x) = x/(1+|x|)
I have no idea if I am doing it right but this is what I did for a):
The two sets:
f: A -> B
The image of f is the set b ∈ B such that f(x) = b has a solution.
Since f(x) = x^2/(1+x^2) and f(x) = b, we have b = x^2/(1+x^2).
Then, b(1+x^2) = x^2.
For this to be true b >= 0. So, does that mean the image of f is b>=0? If so, is there anything more I need to show?
a) f(x) = x^2/(1+x^2)
b) f(x) = x/(1+|x|)
I have no idea if I am doing it right but this is what I did for a):
The two sets:
f: A -> B
The image of f is the set b ∈ B such that f(x) = b has a solution.
Since f(x) = x^2/(1+x^2) and f(x) = b, we have b = x^2/(1+x^2).
Then, b(1+x^2) = x^2.
For this to be true b >= 0. So, does that mean the image of f is b>=0? If so, is there anything more I need to show?