- #1
Math100
- 791
- 220
- Homework Statement
- Determine the last three digits of the number ## 7^{999} ##.
[Hint: ## 7^{4n}\equiv (1+400)^{n}\equiv 1+400n\pmod {1000} ##.]
- Relevant Equations
- None.
Observe that ## 7^{4n}\equiv (7^{4})^{n}\equiv (401)^{n}\equiv (1+400)^{n}\equiv 1+400n\pmod {1000} ##.
Thus
\begin{align*}
&7^{999}\equiv [(7^{4})^{249}\cdot 7^{3}]\pmod {1000}\\
&\equiv [(1+400\cdot 249)\cdot 7^{3}]\pmod {1000}\\
&\equiv [(1+99600)\cdot 7^{3}]\pmod {1000}\\
&\equiv [(1+600)\cdot 7^{3}]\pmod {1000}\\
&\equiv (601\cdot 343)\pmod {1000}\\
&\equiv 206143\pmod {1000}\\
&\equiv 143\pmod {1000}.\\
\end{align*}
Therefore, the last three digits of the number ## 7^{999} ## are ## 143 ##.
Thus
\begin{align*}
&7^{999}\equiv [(7^{4})^{249}\cdot 7^{3}]\pmod {1000}\\
&\equiv [(1+400\cdot 249)\cdot 7^{3}]\pmod {1000}\\
&\equiv [(1+99600)\cdot 7^{3}]\pmod {1000}\\
&\equiv [(1+600)\cdot 7^{3}]\pmod {1000}\\
&\equiv (601\cdot 343)\pmod {1000}\\
&\equiv 206143\pmod {1000}\\
&\equiv 143\pmod {1000}.\\
\end{align*}
Therefore, the last three digits of the number ## 7^{999} ## are ## 143 ##.