MHB Determine the number of integers for which the congruence is true

  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Integers
AI Thread Summary
The congruence \( x^{25} \equiv x \pmod{n} \) holds for all integers \( x \) if \( n \) is a product of distinct primes \( p \) such that \( p-1 \) divides 24. The relevant primes are 2, 3, 5, 7, and 13. Additionally, \( n \) cannot include the square of any prime, as this would violate the congruence for \( x = p \). By the Chinese Remainder Theorem, any combination of these primes will satisfy the condition, resulting in 31 valid integers \( n \geq 2 \). The analysis concludes that the integers satisfying the congruence are precisely those products of the specified primes.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Determine the number of integers $n \geq 2$ for which the congruence $x^{25} \equiv x$ $(mod \;\; n)$ is true for all integers $x$.
 
Mathematics news on Phys.org
lfdahl said:
Determine the number of integers $n \geq 2$ for which the congruence $x^{25} \equiv x$ $(mod \;\; n)$ is true for all integers $x$.
[sp]
Let us look first at a prime divisor $p$ of $n$. If $x\equiv0\pmod{p}$, the congruence is obviously satisfied. Otherwise, we may cancel $x$ and get $x^{24}\equiv1\pmod{p}$.

This congruence will be satisfied if $o(x)\mid24$, where $o(x)$ is the multiplicative order of $x$ modulo $p$. If we take $x$ as a primitive root modulo $p$, we have $o(x)=p-1$, by Fermat's theorem, and this shows that we must have $p-1\mid 24$. Since $o(x)\mid p-1$ for any $x\not\equiv0$, the condition is sufficient as well (if $n=p$).

The primes $p$ such that $p-1\mid 24$ are 2, 3, 5, 7, and 13.

By the Chinese Remainder Theorem, any product of distinct primes from this set will satisfy the congruence for all $x$.

Now, $n$ cannot be divisible by the square of a prime $p$, because the congruence would fail for $x=p$: $p^{25}\equiv0\not\equiv p\pmod{p^2}$.

To summarize, the only integers $n\ge2$ that satisfy the condition are the products of distinct integers from the set $\{2,3,5,7,13\}$; there are $2^5-1=31$ such integers.
[/sp]
 
Last edited:
castor28 said:
[sp]
Let us look first at a prime divisor $p$ of $n$. If $x\equiv0\pmod{p}$, the congruence is obviously satisfied. Otherwise, we may cancel $x$ and get $x^{24}\equiv1\pmod{p}$.

This congruence will be satisfied if $o(x)\mid24$, where $o(x)$ is the multiplicative order of $x$ modulo $p$. If we take $x$ as a primitive root modulo $p$, we have $o(x)=p-1$, by Fermat's theorem, and this shows that we must have $p-1\mid 24$. Since $o(x)\mid p-1$ for any $x\not\equiv0$, the condition is sufficient as well (if $n=p$).

The primes $p$ such that $p-1\mid 24$ are 2, 3, 5, 7, and 13.

By the Chinese Remainder Theorem, any product of distinct primes from this set will satisfy the congruence for all $x$.

Now, $n$ cannot be divisible by the square of a prime $p$, because the congruence would fail for $x=p$: $p^{25}\equiv0\not\equiv p\pmod{p^2}$.

To summarize, the only integers $n\ge2$ that satisfy the condition are the products of distinct integers from the set $\{2,3,5,7,13\}$; there are $2^5-1=31$ such integers.
[/sp]

Amazing, castor28! Thankyou very much for your sharp-minded deduction! (Cool)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top