- #1
Math100
- 797
- 221
- Homework Statement
- Consider the eight-digit bank identification number ## a_{1}a_{2}...a_{8} ##, which is followed by a ninth check digit ## a_{9} ## chosen to satisfy the congruence
## a_{9}\equiv (7a_{1}+3a_{2}+9a_{3}+7a_{4}+3a_{5}+9a_{6}+7a_{7}+3a_{8})\pmod {10} ##.
The bank identification number ## 237a_{4}18538 ## has an illegible fourth digit. Determine the value of the obscured digit.
- Relevant Equations
- None.
Consider the bank identification number ## 237a_{4}18538 ##.
Note that ## a_{9}=8 ##.
This means
\begin{align*}
&a_{9}\equiv (2\cdot 7+3\cdot 3+7\cdot 9+a_{4}\cdot 7+1\cdot 3+8\cdot 9+5\cdot 7+3\cdot 3)\pmod {10}\\
&\equiv (205+7a_{4})\pmod {10}\\
&\equiv (5+7a_{4})\pmod {10}.\\
\end{align*}
Since ## 3-7a_{4}=10k ## for some ## k\in\mathbb{Z} ## where ## 0\leq a_{4}\leq 9 ##,
it follows that ## -63\leq -7a_{4}\leq 0\implies -60\leq 3-7a_{4}\leq 3 ##.
Thus ## a_{4}=9 ##.
Therefore, the value of the obscured digit is ## 9 ##.
Note that ## a_{9}=8 ##.
This means
\begin{align*}
&a_{9}\equiv (2\cdot 7+3\cdot 3+7\cdot 9+a_{4}\cdot 7+1\cdot 3+8\cdot 9+5\cdot 7+3\cdot 3)\pmod {10}\\
&\equiv (205+7a_{4})\pmod {10}\\
&\equiv (5+7a_{4})\pmod {10}.\\
\end{align*}
Since ## 3-7a_{4}=10k ## for some ## k\in\mathbb{Z} ## where ## 0\leq a_{4}\leq 9 ##,
it follows that ## -63\leq -7a_{4}\leq 0\implies -60\leq 3-7a_{4}\leq 3 ##.
Thus ## a_{4}=9 ##.
Therefore, the value of the obscured digit is ## 9 ##.
Last edited: