Determine the value of the obscured digit

  • Thread starter Math100
  • Start date
  • Tags
    Value
In summary, the bank identification number ## 237a_{4}18538 ## has an obscured fourth digit, but since ## a_{9}=8 ##, it can be deduced that the obscured digit is ## 9 ##.
  • #1
Math100
802
222
Homework Statement
Consider the eight-digit bank identification number ## a_{1}a_{2}...a_{8} ##, which is followed by a ninth check digit ## a_{9} ## chosen to satisfy the congruence
## a_{9}\equiv (7a_{1}+3a_{2}+9a_{3}+7a_{4}+3a_{5}+9a_{6}+7a_{7}+3a_{8})\pmod {10} ##.
The bank identification number ## 237a_{4}18538 ## has an illegible fourth digit. Determine the value of the obscured digit.
Relevant Equations
None.
Consider the bank identification number ## 237a_{4}18538 ##.
Note that ## a_{9}=8 ##.
This means
\begin{align*}
&a_{9}\equiv (2\cdot 7+3\cdot 3+7\cdot 9+a_{4}\cdot 7+1\cdot 3+8\cdot 9+5\cdot 7+3\cdot 3)\pmod {10}\\
&\equiv (205+7a_{4})\pmod {10}\\
&\equiv (5+7a_{4})\pmod {10}.\\
\end{align*}
Since ## 3-7a_{4}=10k ## for some ## k\in\mathbb{Z} ## where ## 0\leq a_{4}\leq 9 ##,
it follows that ## -63\leq -7a_{4}\leq 0\implies -60\leq 3-7a_{4}\leq 3 ##.
Thus ## a_{4}=9 ##.
Therefore, the value of the obscured digit is ## 9 ##.
 
Last edited:
Physics news on Phys.org
  • #2
Math100 said:
Homework Statement:: Consider the eight-digit bank identification number ## a_{1}a_{2}...a_{8} ##, which is followed by a ninth check digit ## a_{9} ## chosen to satisfy the congruence
## a_{9}\equiv (7a_{1}+3a_{2}+9a_{3}+7a_{4}+3a_{5}+9a_{6}+7a_{7}+3a_{8})\pmod {10} ##.
The bank identification number ## 237a_{4}18538 ## has an illegible fourth digit. Determine the value of the obscured digit.
Relevant Equations:: None.

Consider the bank identification number ## 237a_{4}18538 ##.
Note that ## a_{9}=8 ##.
This means
\begin{align*}
&a_{9}\equiv (2\cdot 7+3\cdot 3+7\cdot 9+a_{4}\cdot 7+1\cdot 3+8\cdot 9+5\cdot 7+3\cdot 3)\pmod {10}\\
&\equiv (205+7a_{4})\pmod {10}\\
&\equiv (5+7a_{4})\pmod {10}.\\
\end{align*}
Since ## 3-7a_{4}=10k ## for some ## k\in\mathbb{Z} ## where ## 0\leq a_{4}\leq 9 ##,
it follows that ## -63\leq -7a_{4}\leq 0\implies -60\leq 3-7a_{4}\leq 3 ##.
Thus ## a_{4}=9 ##.
Therefore, the value of the obscured digit is ## 9 ##.
Right.
 
  • Like
Likes Math100

FAQ: Determine the value of the obscured digit

What is meant by "obscured digit"?

The obscured digit refers to a number or digit that is hidden or not clearly visible in a given equation or problem.

Why is it important to determine the value of the obscured digit?

Determining the value of the obscured digit is important because it allows us to solve the entire equation or problem accurately and obtain the correct answer.

How can we determine the value of the obscured digit?

The value of the obscured digit can be determined by using mathematical principles such as algebraic equations, substitution, and logical reasoning.

Are there any specific techniques or strategies for determining the value of the obscured digit?

Yes, there are various techniques and strategies that can be used, such as working backwards, using patterns, and breaking down the problem into smaller parts.

Can determining the value of the obscured digit be applied in real-life situations?

Yes, the concept of determining the value of the obscured digit is commonly used in real-life situations such as financial calculations, data analysis, and coding.

Back
Top