- #1
karush
Gold Member
MHB
- 3,269
- 5
Determine if the set of vectors
$\begin{bmatrix}
x\\y\\3x+2y
\end{bmatrix}$ $\in \Bbb{R}^3$
form a vector space
(with the usual addition and scalar multiplication for vectors in $\Bbb{R}^3$).OK first of all this doesn't have z in it.
So I don't know if this meets the requirement of
whether number of elements in the set are equal to the dimension of given vector spaceOk I assume a matrix can be formed of this as albeit assuming
$x_1,x_2,x_3 \textit{ and } y_1,y_2,y_3$
$\begin{bmatrix}
1&0\\0&1\\3&2
\end{bmatrix}$
I don't see how this would be linearly independent
$\begin{bmatrix}
x\\y\\3x+2y
\end{bmatrix}$ $\in \Bbb{R}^3$
form a vector space
(with the usual addition and scalar multiplication for vectors in $\Bbb{R}^3$).OK first of all this doesn't have z in it.
So I don't know if this meets the requirement of
whether number of elements in the set are equal to the dimension of given vector spaceOk I assume a matrix can be formed of this as albeit assuming
$x_1,x_2,x_3 \textit{ and } y_1,y_2,y_3$
$\begin{bmatrix}
1&0\\0&1\\3&2
\end{bmatrix}$
I don't see how this would be linearly independent