- #1
Math100
- 796
- 221
- Homework Statement
- The International Standard Book Number (ISBN) used in many libraries consists of nine digits ## a_{1}a_{2}...a_{9} ## followed by a tenth check digit ## a_{10} ##, which satisfies
## a_{10}\equiv \sum^{9}_{k=1} ka_{k}\pmod {11} ##.
Determine whether each of the ISBNs below is correct:
(a) 0-07-232569-0 (United States).
(b) 91-7643-497-5 (Sweden).
(c) 1-56947-303-10 (England).
- Relevant Equations
- None.
(a)
Consider the ISBN ## 0-07-232569-0 ## from the United States.
Observe that
\begin{align*}
&\sum^{9}_{k=1} ka_{k}\pmod {11}\\
&\equiv (a_{1}+2a_{2}+\dotsb +9a_{9})\pmod {11}\\
&\equiv (0+2\cdot 0+3\cdot 7+4\cdot 2+5\cdot 3+6\cdot 2+7\cdot 5+8\cdot 6+9\cdot 9)\pmod {11}\\
&\equiv (21+8+15+12+35+48+81)\pmod {11}\\
&\equiv 220\pmod {11}\\
&\equiv 0\pmod {11}.\\
\end{align*}
Thus ## \sum^{9}_{k=1} ka_{k}\pmod {11}\equiv a_{10} ##.
Therefore, the ISBN ## 0-07-232569-0 ## is correct.
(b)
Consider the ISBN ## 91-7643-497-5 ## from Sweden.
Observe that
\begin{align*}
&\sum^{9}_{k=1} ka_{k}\pmod {11}\\
&\equiv (a_{1}+2a_{2}+\dotsb +9a_{9})\pmod {11}\\
&\equiv (9+2\cdot 1+3\cdot 7+4\cdot 6+5\cdot 4+6\cdot 3+7\cdot 4+8\cdot 9+9\cdot 7)\pmod {11}\\
&\equiv (9+2+21+24+20+18+28+72+63)\pmod {11}\\
&\equiv 257\pmod {11}\\
&\equiv 4\pmod {11}.\\
\end{align*}
Thus ## \sum^{9}_{k=1} ka_{k}\pmod {11}\not\equiv a_{10} ## because ## a_{10}=5 ##.
Therefore, the ISBN ## 91-7643-497-5 ## is not correct.
(c)
Consider the ISBN ## 1-56947-303-10 ## from England.
Observe that
\begin{align*}
&\sum^{9}_{k=1} ka_{k}\pmod {11}\\
&\equiv (a_{1}+2a_{2}+\dotsb +9a_{9})\pmod {11}\\
&\equiv (1+2\cdot 5+3\cdot 6+4\cdot 9+5\cdot 4+6\cdot 7+7\cdot 3+8\cdot 0+9\cdot 3)\pmod {11}\\
&\equiv (1+10+18+36+20+42+21+27)\pmod {11}\\
&\equiv 175\pmod {11}\\
&\equiv 10\pmod {11}.\\
\end{align*}
Thus ## \sum^{9}_{k=1} ka_{k}\pmod {11}\equiv a_{10} ##.
Therefore, the ISBN ## 1-56947-303-10 ## is correct.
Consider the ISBN ## 0-07-232569-0 ## from the United States.
Observe that
\begin{align*}
&\sum^{9}_{k=1} ka_{k}\pmod {11}\\
&\equiv (a_{1}+2a_{2}+\dotsb +9a_{9})\pmod {11}\\
&\equiv (0+2\cdot 0+3\cdot 7+4\cdot 2+5\cdot 3+6\cdot 2+7\cdot 5+8\cdot 6+9\cdot 9)\pmod {11}\\
&\equiv (21+8+15+12+35+48+81)\pmod {11}\\
&\equiv 220\pmod {11}\\
&\equiv 0\pmod {11}.\\
\end{align*}
Thus ## \sum^{9}_{k=1} ka_{k}\pmod {11}\equiv a_{10} ##.
Therefore, the ISBN ## 0-07-232569-0 ## is correct.
(b)
Consider the ISBN ## 91-7643-497-5 ## from Sweden.
Observe that
\begin{align*}
&\sum^{9}_{k=1} ka_{k}\pmod {11}\\
&\equiv (a_{1}+2a_{2}+\dotsb +9a_{9})\pmod {11}\\
&\equiv (9+2\cdot 1+3\cdot 7+4\cdot 6+5\cdot 4+6\cdot 3+7\cdot 4+8\cdot 9+9\cdot 7)\pmod {11}\\
&\equiv (9+2+21+24+20+18+28+72+63)\pmod {11}\\
&\equiv 257\pmod {11}\\
&\equiv 4\pmod {11}.\\
\end{align*}
Thus ## \sum^{9}_{k=1} ka_{k}\pmod {11}\not\equiv a_{10} ## because ## a_{10}=5 ##.
Therefore, the ISBN ## 91-7643-497-5 ## is not correct.
(c)
Consider the ISBN ## 1-56947-303-10 ## from England.
Observe that
\begin{align*}
&\sum^{9}_{k=1} ka_{k}\pmod {11}\\
&\equiv (a_{1}+2a_{2}+\dotsb +9a_{9})\pmod {11}\\
&\equiv (1+2\cdot 5+3\cdot 6+4\cdot 9+5\cdot 4+6\cdot 7+7\cdot 3+8\cdot 0+9\cdot 3)\pmod {11}\\
&\equiv (1+10+18+36+20+42+21+27)\pmod {11}\\
&\equiv 175\pmod {11}\\
&\equiv 10\pmod {11}.\\
\end{align*}
Thus ## \sum^{9}_{k=1} ka_{k}\pmod {11}\equiv a_{10} ##.
Therefore, the ISBN ## 1-56947-303-10 ## is correct.