- #1
azatkgz
- 186
- 0
Homework Statement
Determine whether the series [tex]\sum_{n=2}^{\infty}a_n[/tex] is absolutely,conditionally convergent or divergent
[tex]a_n=\frac{(-1)^n}{\sqrt{n}(\frac{2n}{n+1})^\pi}[/tex]
The Attempt at a Solution
from Abel's test.[tex]c_n=\frac{(-1)^n}{\sqrt{n}}[/tex]is convergent.and
[tex]b_n=(\frac{2n}{n+1})^\pi}=\frac{2^{\pi}}{(1+\frac{1}{n})^{\pi}}=\frac{2^{\pi}}{1+\frac{\pi}{n}+o(\frac{1}{n^2})}[/tex].Which has limit [tex]2^{\pi}[/tex].So a_n is convergent.
[tex]|a_n|=\frac{2^{\pi}}{\sqrt{n}(1+\frac{1}{n})^{\pi}}=\frac{2^{\pi}}{\sqrt{n}+\frac{\pi}{\sqrt{n}}+O(\frac{1}{\sqrt{n}n})}[/tex]
I don't know exactly but it seems to me that the last equation is divergent.So a_n is conditionally convergent.