Determine (with proof) the set of all prime numbers

In summary, the pattern of the numbers is that the first number is always double the second number minus one. The third number is always the sum of the first two numbers. The fourth number is always double the third number minus one. And so on, with each subsequent number being the sum
  • #1
Math100
809
227
Homework Statement
Determine (with proof) the set of all prime numbers that can divide two successive integers of the form ## n^{2}+3 ##.
Relevant Equations
None.
Proof:

Let ## p ## be the prime divisor of two successive integers ## n^{2}+3 ## and ## (n+1)^{2}+3 ##.
Then ## p\mid [(n+1)^{2}+3-(n^{2}+3)]\implies p\mid (2n+1) ##.
Observe that ## p\mid (n^{2}+3) ## and ## p\mid (2n+1) ##.
Now we see that ## p\mid [(n^{2}+3)-3(2n+1)]\implies p\mid (n^{2}-6n)\implies p\mid [n(n-6)] ##.
Since ## p\nmid n ##, it follows that ## p\mid (n-6) ##.
By Euclidean Algorithm, we have that ## p\mid (2n+1)\implies p\mid [2(n-6)+13] ##.
Therefore, the set of all prime numbers that can divide two successive integers of the form ## n^{2}+3 ## is ## {13} ##.
 
Physics news on Phys.org
  • #2
Math100 said:
Homework Statement:: Determine (with proof) the set of all prime numbers that can divide two successive integers of the form ## n^{2}+3 ##.
Relevant Equations:: None.

Proof:

Let ## p ## be the prime divisor of two successive integers ## n^{2}+3 ## and ## (n+1)^{2}+3 ##.
Then ## p\mid [(n+1)^{2}+3-(n^{2}+3)]\implies p\mid (2n+1) ##.
Observe that ## p\mid (n^{2}+3) ## and ## p\mid (2n+1) ##.
Now we see that ## p\mid [(n^{2}+3)-3(2n+1)]\implies p\mid (n^{2}-6n)\implies p\mid [n(n-6)] ##.
Since ## p\nmid n ##, it follows that ## p\mid (n-6) ##.
Why is ##p\mid n## impossible? If ##p|n## then ##p|((n^2+3) -n\cdot n)## and thus ##p=3.## However, if ##3|n## then ##3\nmid (n^2+2n+4)=((n+1)^2+3).##

Now, I see that ##p\nmid n.##
Math100 said:
By Euclidean Algorithm, we have that ## p\mid (2n+1)\implies p\mid [2(n-6)+13] ##.
Wait again. We know ##p|(2n+1)## and ##p|(n-6)##. So ##p|((2n+1)-2\cdot (n-6))=13,## i.e. ##p=13.##
Math100 said:
Therefore, the set of all prime numbers that can divide two successive integers of the form ## n^{2}+3 ## is ## {13} ##.
Yes, that is right.

It wasn't asked for, but is there an example of such an ##n##?
 
  • Like
Likes Math100
  • #3
fresh_42 said:
Why is ##p\mid n## impossible? If ##p|n## then ##p|((n^2+3) -n\cdot n)## and thus ##p=3.## However, if ##3|n## then ##3\nmid (n^2+2n+4)=((n+1)^2+3).##

Now, I see that ##p\nmid n.##

Wait again. We know ##p|(2n+1)## and ##p|(n-6)##. So ##p|((2n+1)-2\cdot (n-6))=13,## i.e. ##p=13.##

Yes, that is right.

It wasn't asked for, but is there an example of such an ##n##?
Should I include/add why ## p\nmid n ## in this proof just like how you did it above? And an example of such an ## n ## is ## 6 ##.
 
  • Like
Likes fresh_42
  • #4
Math100 said:
Should I include/add why ## p\nmid n ## in this proof just like how you did it above? And an example of such an ## n ## is ## 6 ##.
I'd say yes because it is (at least to me) not obvious. You could as well start with the exclusion of ##p=3## in which case ##p\nmid n## becomes obvious from ##p|(n^2+3).##

Here are some more ...

1​
4​
0,3076923077​
2​
7​
0,5384615385​
3​
12​
0,9230769231​
4​
19​
1,4615384615​
5​
28​
2,1538461538​
6​
39​
3​
7​
52​
4​
8​
67​
5,1538461538​
9​
84​
6,4615384615​
10​
103​
7,9230769231​
11​
124​
9,5384615385​
12​
147​
11,3076923077​
13​
172​
13,2307692308​
14​
199​
15,3076923077​
15​
228​
17,5384615385​
16​
259​
19,9230769231​
17​
292​
22,4615384615​
18​
327​
25,1538461538​
19​
364​
28​
20​
403​
31​
21​
444​
34,1538461538​
22​
487​
37,4615384615​
23​
532​
40,9230769231​
24​
579​
44,5384615385​
25​
628​
48,3076923077​
26​
679​
52,2307692308​
27​
732​
56,3076923077​
28​
787​
60,5384615385​
29​
844​
64,9230769231​
30​
903​
69,4615384615​
31​
964​
74,1538461538​
32​
1027​
79​
33​
1092​
84​
34​
1159​
89,1538461538​
35​
1228​
94,4615384615​
36​
1299​
99,9230769231​
37​
1372​
105,5384615385​
38​
1447​
111,3076923077​
39​
1524​
117,2307692308​
40​
1603​
123,3076923077​
41​
1684​
129,5384615385​
42​
1767​
135,9230769231​
43​
1852​
142,4615384615​
44​
1939​
149,1538461538​
45​
2028​
156​
46​
2119​
163​
47​
2212​
170,1538461538​
48​
2307​
177,4615384615​
49​
2404​
184,9230769231​
50​
2503​
192,5384615385​
 
  • Wow
Likes Math100
Back
Top