- #1
Benny
- 584
- 0
Can someone help me out with the following question?
Use coordinate vectors to determine whether or not the given set is linearly independent. If it is linearly dependent, express one of the vectors as a linear combination of the others.
The set S, is [tex]\left\{ {2 + x - 3\sin x + \cos x,x + \sin x - 3\cos x,1 - 2x + 3\sin x + \cos x,2 - x - \sin x - \cos x,2 + \sin x - 3\cos x} \right\}[/tex].
So I assume that I start off by letting c_i (i = 1,2,3,4,5) be scalars multiply each of the c_i by each of the elements of S and get an equation which looks something like:
(something) + (something else)x + (another thing)sinx + (something different)cosx = 0.
I'm not really sure how to proceed at this point. One of the examples in my book, with a different set S(with 3 elements), substitutes 3 specific values of x into the equation and gets c_1 = c_2 = c_3 = 0 so that the set is linearly independent.
However, I'm not sure if that is the right method because if I have S = {1, sin^2(x), cos^2(x)} then S is linearly dependent since 1 = (1)cos^2(x) + (1)sin^2(x). But if I substitute x = 0, x = pi/2, x = pi into the equation 1 + sin^2(x) + cos^2(x) = 0 then I get a homegeneous system which only has the trivial solution and my books to suggest that it is enough to conclude from that, the set S is linearly independent(when it is clearly isn't as I just demonstrated before).
More specifically, my book says that the equation(say c_1(1) + c_2(x) + c_3(sinx) = 0 must hold for all values of x so it holds for specific values of x. I just don't know if that's a valid 'method' to use. If it is then I could simply substitute 'convenient' values of x for the question that I included at the beginning of this message to get a simple system of equations.
In short, I'm not sure how to proceed with the question I included at the start of this message. Can someone please help me out?
Use coordinate vectors to determine whether or not the given set is linearly independent. If it is linearly dependent, express one of the vectors as a linear combination of the others.
The set S, is [tex]\left\{ {2 + x - 3\sin x + \cos x,x + \sin x - 3\cos x,1 - 2x + 3\sin x + \cos x,2 - x - \sin x - \cos x,2 + \sin x - 3\cos x} \right\}[/tex].
So I assume that I start off by letting c_i (i = 1,2,3,4,5) be scalars multiply each of the c_i by each of the elements of S and get an equation which looks something like:
(something) + (something else)x + (another thing)sinx + (something different)cosx = 0.
I'm not really sure how to proceed at this point. One of the examples in my book, with a different set S(with 3 elements), substitutes 3 specific values of x into the equation and gets c_1 = c_2 = c_3 = 0 so that the set is linearly independent.
However, I'm not sure if that is the right method because if I have S = {1, sin^2(x), cos^2(x)} then S is linearly dependent since 1 = (1)cos^2(x) + (1)sin^2(x). But if I substitute x = 0, x = pi/2, x = pi into the equation 1 + sin^2(x) + cos^2(x) = 0 then I get a homegeneous system which only has the trivial solution and my books to suggest that it is enough to conclude from that, the set S is linearly independent(when it is clearly isn't as I just demonstrated before).
More specifically, my book says that the equation(say c_1(1) + c_2(x) + c_3(sinx) = 0 must hold for all values of x so it holds for specific values of x. I just don't know if that's a valid 'method' to use. If it is then I could simply substitute 'convenient' values of x for the question that I included at the beginning of this message to get a simple system of equations.
In short, I'm not sure how to proceed with the question I included at the start of this message. Can someone please help me out?