- #1
tmt1
- 234
- 0
I have this series:
$$\sum_{k = 1}^{\infty} {4}^{\frac{1}{k}}$$
To solve this, I am trying to compare it to this series
$$\sum_{k = 1}^{\infty} {4}^{k}$$
So, I can let $a_k = {4}^{\frac{1}{k}} $ and $b_k = {4}^{k}$
These seem to be both positive series and $ 0 \le a_k \le b_k$
Therefore, if $\sum_{}^{} b_k$ converges then $\sum_{}^{} a_k$ converges and if $\sum_{}^{} a_k$ diverges, then $\sum_{}^{} b_k $ diverges.
However, if $\sum_{}^{} b_k $ diverges, that doesn't guarantee that $\sum_{}^{} a_k$ diverges.
In this case, $\sum_{}^{} b_k $ diverges as $$\sum_{k = 1}^{\infty} {4}^{k}$$ diverges (as $4 > 1$). However, I'm not sure what to conclude with this information.
$$\sum_{k = 1}^{\infty} {4}^{\frac{1}{k}}$$
To solve this, I am trying to compare it to this series
$$\sum_{k = 1}^{\infty} {4}^{k}$$
So, I can let $a_k = {4}^{\frac{1}{k}} $ and $b_k = {4}^{k}$
These seem to be both positive series and $ 0 \le a_k \le b_k$
Therefore, if $\sum_{}^{} b_k$ converges then $\sum_{}^{} a_k$ converges and if $\sum_{}^{} a_k$ diverges, then $\sum_{}^{} b_k $ diverges.
However, if $\sum_{}^{} b_k $ diverges, that doesn't guarantee that $\sum_{}^{} a_k$ diverges.
In this case, $\sum_{}^{} b_k $ diverges as $$\sum_{k = 1}^{\infty} {4}^{k}$$ diverges (as $4 > 1$). However, I'm not sure what to conclude with this information.
Last edited: