- #1
tmt1
- 234
- 0
I have
$$\sum_{n = 2}^{\infty} \frac{{(\ln\left({n}\right)})^{12}}{n^{\frac{9}{8}}}$$
We can compare it to $ \frac{1}{{n}^{\frac{1}{8}}}$. $ \sum_{n = 1}^{\infty} \frac{1}{{n}^{\frac{1}{8}}}$ diverges because $p < 1$ in this case. So, if I can prove that $ \frac{{(\ln\left({n}\right)})^{12}}{n^{\frac{9}{8}}} \ge \frac{1}{{n}^{\frac{1}{8}}}$ then that would mean $\sum_{n = 2}^{\infty} \frac{{\ln\left({n}\right)}^{12}}{n^{\frac{9}{8}}}$ diverges. Or $ \frac{{(\ln\left({n}\right)})^{12}}{n^{\frac{9}{8}}} - \frac{1}{{n}^{\frac{1}{8}}} \ge 0 $.
How can I prove this?
$$\sum_{n = 2}^{\infty} \frac{{(\ln\left({n}\right)})^{12}}{n^{\frac{9}{8}}}$$
We can compare it to $ \frac{1}{{n}^{\frac{1}{8}}}$. $ \sum_{n = 1}^{\infty} \frac{1}{{n}^{\frac{1}{8}}}$ diverges because $p < 1$ in this case. So, if I can prove that $ \frac{{(\ln\left({n}\right)})^{12}}{n^{\frac{9}{8}}} \ge \frac{1}{{n}^{\frac{1}{8}}}$ then that would mean $\sum_{n = 2}^{\infty} \frac{{\ln\left({n}\right)}^{12}}{n^{\frac{9}{8}}}$ diverges. Or $ \frac{{(\ln\left({n}\right)})^{12}}{n^{\frac{9}{8}}} - \frac{1}{{n}^{\frac{1}{8}}} \ge 0 $.
How can I prove this?