- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hi guys!I have a question..How can I show that the function that has the following identities:
[tex]\bullet[/tex] [tex]f(x)\neq 0[/tex] ,[tex]x\in\mathbb{R}[/tex].
[tex]\bullet[/tex] [tex]f(0)=f\left(\dfrac{2}{3}\right)[/tex].
[tex]\int_{0}^{x}\frac{f(t)f(x-t)}{f(\frac{2+t}{3})f(\frac{2+x-t}{3})}=\int_{0}^{x}\frac{f^2{(t)}}{f^2{(\frac{2+t}{3}})}[/tex]
is f(x)=c..??
That's what I did:
=>[tex]\int_{0}^{x}\frac{f(t)f(x-t)}{f(\frac{2+t}{3})f(\frac{2+x-t}{3})}=\int_{0}^{x}\frac{f^2{(t)}}{f^2{(\frac{2+t}{3}})}[/tex]
[tex]\frac{f(x)f(0)}{f(\frac{2+x}{3})f(\frac{2}{3})}[/tex]=[tex]\frac{f^2{(x)}}{f^2(\frac{2+x}{3})}[/tex] .
Because [tex]f(0)=f(\frac{2}{3})[/tex]
[tex]\frac{f(x)}{f(\frac{2+x}{3})}=\frac{f^{2}(x)}{f^2(\frac{2+x}{3}){}}[/tex]
=> [tex]f^2{(\frac{2+x}{3})}f(x)=f^2{(x)}f{(\frac{2+x}{3})}[/tex]
=>[tex]f{(\frac{2+x}{3})}=f(x)[/tex] , [tex]f(x) \neq 0[/tex]
=>f(x)=c
Is this right?
[tex]\bullet[/tex] [tex]f(x)\neq 0[/tex] ,[tex]x\in\mathbb{R}[/tex].
[tex]\bullet[/tex] [tex]f(0)=f\left(\dfrac{2}{3}\right)[/tex].
[tex]\int_{0}^{x}\frac{f(t)f(x-t)}{f(\frac{2+t}{3})f(\frac{2+x-t}{3})}=\int_{0}^{x}\frac{f^2{(t)}}{f^2{(\frac{2+t}{3}})}[/tex]
is f(x)=c..??
That's what I did:
=>[tex]\int_{0}^{x}\frac{f(t)f(x-t)}{f(\frac{2+t}{3})f(\frac{2+x-t}{3})}=\int_{0}^{x}\frac{f^2{(t)}}{f^2{(\frac{2+t}{3}})}[/tex]
[tex]\frac{f(x)f(0)}{f(\frac{2+x}{3})f(\frac{2}{3})}[/tex]=[tex]\frac{f^2{(x)}}{f^2(\frac{2+x}{3})}[/tex] .
Because [tex]f(0)=f(\frac{2}{3})[/tex]
[tex]\frac{f(x)}{f(\frac{2+x}{3})}=\frac{f^{2}(x)}{f^2(\frac{2+x}{3}){}}[/tex]
=> [tex]f^2{(\frac{2+x}{3})}f(x)=f^2{(x)}f{(\frac{2+x}{3})}[/tex]
=>[tex]f{(\frac{2+x}{3})}=f(x)[/tex] , [tex]f(x) \neq 0[/tex]
=>f(x)=c
Is this right?