- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
We have the function $f: (\mathbb{R}^2,\|\cdot\|_2)\rightarrow (\mathbb{R},|\cdot |)$ with \begin{equation*}f(x,y)=\begin{cases}y-x & y\geq x^2 \\ 0 & y<x^2\end{cases}\end{equation*}
I have shown that $f(x,y)$ is discontinuous at the points $(x,x^2)$ with $x\neq 0,1$ and continuous at the other points, i.e. at the points $(x,y)$ with $y<x^2$ and $y>x^2$, and also at the points $(0,0)$ and $(1,1)$.
Now I want to determine the maximum and minimum of $f$, if they exist. When $y\geq x^2$ we have that $f(x,y)=y-x\geq x^2-x\geq -\frac{1}{4}$.
($-\frac{1}{4}$ is the minimum of $x^2-x$ at $x=\frac{1}{2}$)
Since $-\frac{1}{4}$ is smaller than $0$ (the value of the function when $y<x^2$) it follows that the function $f(x,y)$ has a minimum at $(x,y)=(x,x^2)=\left (\frac{1}{2}, \frac{1}{4}\right )$ which is equal to $-\frac{1}{4}$.
Is this correct? If yes, could we improve the justification? (Wondering) About the maximum: In the first case, $y$ is greater than $x^2$, so I think that the value of the function can grow infinitely, i.e. it has no maximum. Is this correct? But how could we justify that formally? (Wondering)
We have the function $f: (\mathbb{R}^2,\|\cdot\|_2)\rightarrow (\mathbb{R},|\cdot |)$ with \begin{equation*}f(x,y)=\begin{cases}y-x & y\geq x^2 \\ 0 & y<x^2\end{cases}\end{equation*}
I have shown that $f(x,y)$ is discontinuous at the points $(x,x^2)$ with $x\neq 0,1$ and continuous at the other points, i.e. at the points $(x,y)$ with $y<x^2$ and $y>x^2$, and also at the points $(0,0)$ and $(1,1)$.
Now I want to determine the maximum and minimum of $f$, if they exist. When $y\geq x^2$ we have that $f(x,y)=y-x\geq x^2-x\geq -\frac{1}{4}$.
($-\frac{1}{4}$ is the minimum of $x^2-x$ at $x=\frac{1}{2}$)
Since $-\frac{1}{4}$ is smaller than $0$ (the value of the function when $y<x^2$) it follows that the function $f(x,y)$ has a minimum at $(x,y)=(x,x^2)=\left (\frac{1}{2}, \frac{1}{4}\right )$ which is equal to $-\frac{1}{4}$.
Is this correct? If yes, could we improve the justification? (Wondering) About the maximum: In the first case, $y$ is greater than $x^2$, so I think that the value of the function can grow infinitely, i.e. it has no maximum. Is this correct? But how could we justify that formally? (Wondering)