- #1
nhrock3
- 415
- 0
[tex]f=\frac{z}{1-\cos z}[/tex]
the singular points are z=2pik and zero
i solved for z=2pik
and poles because there limit is infinity
now i want to determine te power of the pole
g=1/f=[tex]\frac{1-\cos z}{z}[/tex]
[tex]g'=\frac{(-\sin z)z-(1-\cos z)}{z^2}[/tex]
[tex]g'(0)=0/0[/tex]
[tex]g''=\frac{-\sin z z^2 -(cos z -1)2z}{z^4}[/tex]
[tex]g''(0)=0/0[/tex]
the book says that its a first order pole
it should differ zero in order to be pole
the singular points are z=2pik and zero
i solved for z=2pik
and poles because there limit is infinity
now i want to determine te power of the pole
g=1/f=[tex]\frac{1-\cos z}{z}[/tex]
[tex]g'=\frac{(-\sin z)z-(1-\cos z)}{z^2}[/tex]
[tex]g'(0)=0/0[/tex]
[tex]g''=\frac{-\sin z z^2 -(cos z -1)2z}{z^4}[/tex]
[tex]g''(0)=0/0[/tex]
the book says that its a first order pole
it should differ zero in order to be pole
Last edited: