- #1
oferon
- 30
- 0
Please don't mind my math english, I'm really not used to it yet..
Given [itex]R\in M_n(F)[/itex] and two matrices [itex]A\in M_{n1}(F)[/itex] and [itex]D\in M_{n2}(F)[/itex] where [itex]n1+n2=n[/itex]
[itex]R = \begin{pmatrix} A & B \\ 0 & D \end{pmatrix}[/itex]
Given A,D both diagonalizable (over F), and don't share any identical eigenvalues - Prove that R is diagonalizable.
Ok, So what i did was building eigenvectors for R, based on the eigenvalues and eigenvectors of A and D.
for example, suppose [itex]λ_1 [/itex] is eigenvalue of A with eigenvector [itex]V = \begin{pmatrix} V1 \\ V2 \\. \\. \\. \end{pmatrix}[/itex], then taking [itex]U = \begin{pmatrix} V1 \\ V2 \\. \\. \\0 \\0\\0\end{pmatrix}[/itex] would give [itex]R*U = λ_1*U[/itex] thus λ1,U are eigenvalue and vector of R
I managed to do the same using D. So now I have a set of eigenvalues and vectors of R.
My question is - How can I tell that R has no other eigenvalues other than those of A and D, and finish my proof... Thanks!
Given [itex]R\in M_n(F)[/itex] and two matrices [itex]A\in M_{n1}(F)[/itex] and [itex]D\in M_{n2}(F)[/itex] where [itex]n1+n2=n[/itex]
[itex]R = \begin{pmatrix} A & B \\ 0 & D \end{pmatrix}[/itex]
Given A,D both diagonalizable (over F), and don't share any identical eigenvalues - Prove that R is diagonalizable.
Ok, So what i did was building eigenvectors for R, based on the eigenvalues and eigenvectors of A and D.
for example, suppose [itex]λ_1 [/itex] is eigenvalue of A with eigenvector [itex]V = \begin{pmatrix} V1 \\ V2 \\. \\. \\. \end{pmatrix}[/itex], then taking [itex]U = \begin{pmatrix} V1 \\ V2 \\. \\. \\0 \\0\\0\end{pmatrix}[/itex] would give [itex]R*U = λ_1*U[/itex] thus λ1,U are eigenvalue and vector of R
I managed to do the same using D. So now I have a set of eigenvalues and vectors of R.
My question is - How can I tell that R has no other eigenvalues other than those of A and D, and finish my proof... Thanks!