- #1
shamieh
- 539
- 0
Solev by Laplace Transforms
$y'' - 5y' + 6y = 1$ $y(0) = 1$, $y'(0) = 0$So I am getting stuck. Here's my work
$s^2Y - 5sY + 6Y = \frac{1}{s} + s - 5$
multiplied through by $s$ to get
$s^3Y - 5s^2Y + 6sY = 1 + s^2 - 5s$
so:
$Y = \frac{1+s^2-5s}{s^3-5s^2+6s}$
so: $1+s^2-5s = \frac{A}{s} + \frac{B}{s-2} + \frac{C}{s-3}$
so: is it correct to say $1+s^2-5s = A(s-2)(s-3) + Bs(s-3) + Cs(s-2)$
$y'' - 5y' + 6y = 1$ $y(0) = 1$, $y'(0) = 0$So I am getting stuck. Here's my work
$s^2Y - 5sY + 6Y = \frac{1}{s} + s - 5$
multiplied through by $s$ to get
$s^3Y - 5s^2Y + 6sY = 1 + s^2 - 5s$
so:
$Y = \frac{1+s^2-5s}{s^3-5s^2+6s}$
so: $1+s^2-5s = \frac{A}{s} + \frac{B}{s-2} + \frac{C}{s-3}$
so: is it correct to say $1+s^2-5s = A(s-2)(s-3) + Bs(s-3) + Cs(s-2)$