Did I Calculate the Correct Derivative to Validate Faraday's Law?

AI Thread Summary
The discussion focuses on validating Faraday's Law through the calculation of the negative time derivative of the magnetic field B(r, t), resulting in a specific sine wave expression. The user encounters difficulties with the curl of the electric field, questioning how to demonstrate its equivalence to the negative time derivative of the magnetic field. They note that the curl seems not to affect the cosine term, leading to confusion about their calculations. A warmup exercise involving the derivative of a scalar product helps clarify the signs and patterns in their derivatives. Ultimately, correcting the sign of the sine function allows for a successful resolution of the problem.
Blanchdog
Messages
56
Reaction score
22
Homework Statement
Suppose that an electric field is given by ##E(r, t) = E_0 \text{cos}(k \cdot r - \omega t + \phi) ##, where ##k \perp E_0## and ##\phi## is a constant phase. Show that
$$B(r, t) = \frac{k~\text{x}~E_0}{\omega} \text{cos}((k \cdot r - \omega t + \phi)$$ is consistent with Faraday's Law.
Relevant Equations
Faradays Law: $$\nabla~\text x~E = -\frac{\partial B}{\partial t}$$
I've calculated the negative time derivative of B(r, t) as: $$-\frac{\partial B}{\partial t} = k~\text x~E_0~\text{sin}(k \cdot r - \omega t + \phi)$$ The cross product can be easily expanded, I'd just rather not do the LaTeX for if I can avoid it.

The Curl of the electric field (##\nabla~\text{x}~ E##) is giving more trouble though. I should end up with a sine wave (or a cosine offset by pi/2) but as best I can tell the curl doesn't affect the stuff within the cosine at all since k and r are dotted together into a scalar. How do I show that the curl of the electric field is equal to the result of the negative time derivative of of the magnetic field above, or did I make a mistake in calculating that derivative?
 
Physics news on Phys.org
Blanchdog said:
as best I can tell the curl doesn't affect the stuff within the cosine at all
As a warmup exercise, calculate ##\frac{\partial}{\partial x} (\mathbf k \cdot \mathbf r)##.
 
Blanchdog said:
I've calculated the negative time derivative of B(r, t) as: $$-\frac{\partial B}{\partial t} = k~\text x~E_0~\text{sin}(k \cdot r - \omega t + \phi)$$
Check the signs
 
That was very helpful, I was able to solve it once I fixed the sign of the sine and saw the pattern of the derivatives I was able to do after your warm up.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top