- #1
jisbon
- 476
- 30
- Homework Statement
- Cylinder with mass 1.5kg and 0.1m radius roll without slipping up a slope of length 3m and height 1m. Cylinder has an initial translational velocity of 4m/s. Calculate velocity of the cylinder as it leaves the top of the slope.
- Relevant Equations
- Gain in GPE = Loss in translational KE + loss in rotational KE
I seem to be able to do this problem (at least from what I think, but my answer is still wrong according to the answer key, please do help check.)
Since:
Gain in GPE = Loss in translational KE + loss in rotational KE
##\left(m\cdot g\cdot h\right)=\left(\frac{1}{2}\left(m\right)\left(v_{f}^2\right)-\frac{1}{2}\left(m\right)\left(v_{i}^2\right)\right)+ \left(\frac{1}{2}\left(I\right)\left(\omega_{f}^2\right)-\frac{1}{2}\left(I\right)\left(\omega_{i}^2\right)\right)##
Whereby
##I = 0.5 (mr^2) = 0.5 (1.5*0.1^2)##
##\omega = v/r = 4/0.1##
##\left(1.5\cdot 9.8\cdot 1\right)=\left(\frac{1}{2}\left(1.5\right)\left(v_{f}^2\right)-\frac{1}{2}\left(1.5\right)\left(4^2\right)\right)+\left(\left(\frac{1}{2}\left(0.5\cdot \:1.5\cdot \:0.1^2\right)\left(\frac{v_{f}}{0.1}\right)^2\right)\:-\:\left(\frac{1}{2}\left(0.5\cdot 1.5\cdot 0.1^2\right)\left(\frac{4}{0.1}\right)^2\right)\right)##
Are the equations correct/did I miss something out? Thanks
Since:
Gain in GPE = Loss in translational KE + loss in rotational KE
##\left(m\cdot g\cdot h\right)=\left(\frac{1}{2}\left(m\right)\left(v_{f}^2\right)-\frac{1}{2}\left(m\right)\left(v_{i}^2\right)\right)+ \left(\frac{1}{2}\left(I\right)\left(\omega_{f}^2\right)-\frac{1}{2}\left(I\right)\left(\omega_{i}^2\right)\right)##
Whereby
##I = 0.5 (mr^2) = 0.5 (1.5*0.1^2)##
##\omega = v/r = 4/0.1##
##\left(1.5\cdot 9.8\cdot 1\right)=\left(\frac{1}{2}\left(1.5\right)\left(v_{f}^2\right)-\frac{1}{2}\left(1.5\right)\left(4^2\right)\right)+\left(\left(\frac{1}{2}\left(0.5\cdot \:1.5\cdot \:0.1^2\right)\left(\frac{v_{f}}{0.1}\right)^2\right)\:-\:\left(\frac{1}{2}\left(0.5\cdot 1.5\cdot 0.1^2\right)\left(\frac{4}{0.1}\right)^2\right)\right)##
Are the equations correct/did I miss something out? Thanks
Last edited by a moderator: