- #1
ognik
- 643
- 2
Find the general form of an orthogonal 2 x 2 matrix = $ \begin{bmatrix}a&b\\c&d\end{bmatrix}$
I used $det(A)=\pm 1$ (from an earlier exercise) - and the special form of $ A_{2 \times 2}^{-1} = \frac{ \begin{bmatrix}d&-b\\-c&a\end{bmatrix}}{|A|} $ using $|A| = +1$ first, to get an 'alternative' $ A = \left(A^{-1}\right)^T = \begin{bmatrix}d&-c\\-b&a\end{bmatrix}$
This gave me $ a=Cos\theta, b=Sin \theta $ as expected so far.
But if I do something similar for c and d I get $ c=Cos\theta, d=Sin \theta $, which can't be right 'cos that would be singular.
So using |A| = -1, I get a 2nd 'alternate' $A = -\begin{bmatrix}d&-c\\-b&a\end{bmatrix} = \begin{bmatrix}-d&c\\-b&a\end{bmatrix} $ This is clearly wrong, but can't see what I've done wrong?
I used $det(A)=\pm 1$ (from an earlier exercise) - and the special form of $ A_{2 \times 2}^{-1} = \frac{ \begin{bmatrix}d&-b\\-c&a\end{bmatrix}}{|A|} $ using $|A| = +1$ first, to get an 'alternative' $ A = \left(A^{-1}\right)^T = \begin{bmatrix}d&-c\\-b&a\end{bmatrix}$
This gave me $ a=Cos\theta, b=Sin \theta $ as expected so far.
But if I do something similar for c and d I get $ c=Cos\theta, d=Sin \theta $, which can't be right 'cos that would be singular.
So using |A| = -1, I get a 2nd 'alternate' $A = -\begin{bmatrix}d&-c\\-b&a\end{bmatrix} = \begin{bmatrix}-d&c\\-b&a\end{bmatrix} $ This is clearly wrong, but can't see what I've done wrong?