- #1
Dethrone
- 717
- 0
I'm really exhausted mentally, so it'll be really helpful if someone can tell me where I made a mistake. I'm rotating surfaces, and with that, I had to solve this integral:
$$=\pi \int \sqrt{64-3x^2} dx$$
$$=\frac{\pi}{\sqrt{3}} \int \sqrt{\frac{64}{3}-x^2} dx$$
Let $$x = \frac{8}{\sqrt{3}} sin\left({\theta}\right) d\theta$$
$$dx = \frac{8}{\sqrt{3}} cos\left({\theta}\right) d\theta$$
=$$\frac{8\pi }{3} \int \cos^2\left({\theta}\right) (\frac{8}{\sqrt{3}}) d\theta$$
Have I made a mistake already?
$$=\pi \int \sqrt{64-3x^2} dx$$
$$=\frac{\pi}{\sqrt{3}} \int \sqrt{\frac{64}{3}-x^2} dx$$
Let $$x = \frac{8}{\sqrt{3}} sin\left({\theta}\right) d\theta$$
$$dx = \frac{8}{\sqrt{3}} cos\left({\theta}\right) d\theta$$
=$$\frac{8\pi }{3} \int \cos^2\left({\theta}\right) (\frac{8}{\sqrt{3}}) d\theta$$
Have I made a mistake already?