Difference between two wave functions?

In summary, there are two ways to write the wave function for a sinusoidal wave, but they are essentially the same. The difference lies in the initial phase, which can be determined by the initial configuration of the wave. Both formats are valid and will give the same answer as long as the correct initial phase is used. The velocity of a point on the wave can be found by taking the derivative of the displacement function, and the sign will depend on the initial phase chosen. It is important to carefully consider the initial conditions when using these equations to avoid errors in calculations.
  • #1
DannyPhysika
30
0
Hi, I'm looking through my teacher's notes and he says that a wave function for a sinusoidal wave can be written: y = A sin (ω t – k x) or y = A sin (k x - ω t)

The textbook gives it in the second form. I think that using one over the other gives the same answer but in the opposite sign. I would like to know which one to use over the other. Any clarification is appreciated.
 
Physics news on Phys.org
  • #2
Pick numbers for A, k and ω, and draw some graphs of y versus x, for t = 0 and for t = (some fairly small number). Then you can see explicitly the differences (if any) in the behavior of the two functions.
 
  • #3
The difference between those wave functions is the phase but they are the same. You can check it with some graphics.
 
  • #4
I just started studying this stuff but on a couple occasions my answer was a different sign than the teacher's answer key, so I used the wrong function. This is what confuses me, how to know which to use in order to get the right sign. In the question, an end of a string is given sinusoidal motion and starts at t = 0 with zero displacement. Is that what you are supposed to look at to decide? I understand in SHM that the initial phase angle is zero if an object is released a certain displacement away from its equilibrium with zero speed, but I don't know how to interpret this wave function in the same way.

Tbh it's also frustrating that I find 3-4 clear mistakes on every page of the teacher's notes. I much prefer when the teacher let's the students know the exact sections from the official textbook that are covered because at least I trust the textbook.
 
  • #5
The second one can be witten as
[tex]Asin(\omega t - kx +\pi)[/tex]
so it's a phase difference of 180 degrees.
In general you can have any initial phase:
[tex]Asin(\omega t - kx +\phi)[/tex]
The value of the phase can be found from the initial configuration of the wave. Or we can take as "initial" the configuration that gives phase of zero (or 180 degree).
Could you show a problem for which your answer is not as in the book?
 
  • #6
4.
a) A certain string has a linear mass density of 0.25 kg/m and is stretched with a tension of 25 N. One end is given a sinusoidal motion with frequency 5 Hz and amplitude 0.01m. At time t=0, the end has zero displacement and is moving in the positive y-direction. Find the wave speed, amplitude, angular frequency, period, wavelength, and wave number.

I found all of those, and then I am asked for:

b) Write the wave function describing the wave.

And my answer, based on the textbook, is: Asin(kx - ωt) (I'm using the symbols rather than the actual values to simplify things.

But the answer key is: Asin(ωt - kx)

This leads to opposite answers in the subsequent parts c and d of the question. For example:

d) Find the transverse velocity of the point, x=0.25 m at time t=0.1

so I write my answer as v = -Aωcos(kx - ωt) because I take the derivative of the textbook function with respect to t, and I get the answer 0.22 m/s, but the answer key gives it as -0.22 m/s.
 
  • #7
DannyPhysika said:
At time t=0, the end has zero displacement and is moving in the positive y-direction.

[snip]

And my answer, based on the textbook, is: Asin(kx - ωt)

At x = 0 your answer reduces to A sin (-ωt). At t = 0 this obviously gives a displacement of zero. A short time later, does it give a positive displacement as the problem statement implies?
 
  • #8
The initial phase is determined by the distribution of displacement and velocities at t=0 (and not just displacements). It does not matter what format you use as long as you find the right initial phase.
The velocity of a point is given by the derivative of the displacement in respect to time.
If we start with the format
[tex]y(x,t)=Asin(\omega t -kx +\phi)[/tex]
then
[tex]v(x,t)=\omega A cos(\omega t -kx +\phi)[/tex]
At t=0, x=0,
[tex]y=A sin(\phi)=0[/tex]
This can happen for a phase of 0 or 180.
For
[tex]v=\omega A cos(\phi)[/tex]
to be positive you need phase zero so the equation will be
[tex]y(x,t)=Asin(\omega t -kx)[/tex]

If we start with the format
[tex]y(x,t)=Asin( kx -\omega t+\phi)[/tex]
The velocity will be
[tex]v(x,t)=-\omega A cos(kx -\omega t +\phi)[/tex]
The condition fo v(0,0) to be positive will require a phase of 180 so the final formula will be
[tex]y(x,t)=Asin( kx -\omega t+180)[/tex] which is the same as
[tex]y(x,t)=Asin(\omega t -kx)[/tex]
 

FAQ: Difference between two wave functions?

1. What is a wave function?

A wave function is a mathematical representation of a quantum system that describes the probability of finding the system in a particular state.

2. How are two wave functions different?

Two wave functions can differ in terms of their shape, amplitude, and frequency. They can also differ in the probability of finding the system in a particular state.

3. What are some common types of wave functions?

Some common types of wave functions include the Gaussian wave function, the plane wave function, and the harmonic oscillator wave function.

4. How do you calculate the difference between two wave functions?

The difference between two wave functions can be calculated by subtracting one function from the other and taking the absolute value of the result.

5. Why is understanding the difference between two wave functions important?

Understanding the difference between two wave functions is important in quantum mechanics as it allows scientists to predict the behavior of quantum systems and make accurate measurements.

Similar threads

Replies
5
Views
9K
Replies
2
Views
1K
Replies
8
Views
2K
Replies
9
Views
968
Replies
8
Views
1K
Back
Top