- #1
12Element
- 11
- 1
- TL;DR Summary
- Asking about multiple approaches for integration by substitution with an integral involving the reciprocal of a square root of a quadratic equation.
I have a question about how to solve the following integral: ##\int \frac 1 {x\sqrt{3x^2+2x-1}}dx##, I know how to get the right answer (which agrees with WolframAlpha and the book I got the question from) through substituting ##\frac 1u## for ##x##, completing the square and finally doing a trig substitution. However, I'm not sure why I'm not getting the right answer with the below approach, I would appreciate it if someone looks at my solution and tell me where and why I'm wrong.
$$ \int \frac 1 {x\sqrt{3x^2+2x-1}}dx$$
Using the below substitution:
$$3x^2+2x-1=3\left( t-x \right)^2$$
$$3x^2+2x-1=3t^2-6tx+3x^2$$
$$6tx+2x=3t^2+1$$
$$x=\frac {3t^2+1}{6t+2}$$
The derivative of ##x## with respect to ##t## is:
$$\frac {dx}{dt} = \frac {6t \left( 6t+2 \right) - 6 \left( 3t^2+1 \right)} {\left( 6t+2 \right)^2} = \frac {36t^2+12t-18t^2-6} {\left( 6t+2 \right)^2}$$
$$dx = \frac {6 \left( 3t^2+2t-1 \right)} {\left( 6t+2 \right)^2}dt$$
Also, to find the value of ##t##:
$$3x^2+2x-1=3\left( t-x \right)^2$$
$$\sqrt {3x^2+2x-1}=\sqrt{3}\left( t-x \right)$$
$$t= \frac {\sqrt {3x^2+2x-1}}{\sqrt{3}} + x$$
To find the value of ##\sqrt {3x^2+2x-1}## in terms of ##t##:
$$\sqrt {3x^2+2x-1}=\sqrt{3}\left( t-x \right)$$
substituting for ##x## with the value derived above:
$$\sqrt {3x^2+2x-1}=\sqrt{3}\left( t-\frac {3t^2+1}{6t+2} \right)=\sqrt{3}\left( \frac {6t^2+2t-3t^2-1}{6t+2} \right)$$
$$\sqrt {3x^2+2x-1}=\sqrt{3}~ \frac {3t^2+2t-1}{6t+2} $$
Substituting back into the original integral:
$$ \int \frac 1 {x\sqrt{3x^2+2x-1}}dx = \int \frac {\frac {6 \left( 3t^2+2t-1 \right)} {\left( 6t+2 \right)^2}}{\frac {3t^2+1}{6t+2} \sqrt{3}~ \frac {3t^2+2t-1}{6t+2}}dt= \frac6{\sqrt{3}}\int\frac1{3t^2+1}dt $$
$$= \frac2{\sqrt{3}}\int\frac1{t^2+ \frac13}dt = \frac2{\sqrt{3}}\sqrt{3} \tan^{-1} \left(\sqrt{3} t\right) + C$$
Substituting back for ##t## with ##x##:
$$= 2\tan^{-1} \left[ \sqrt{3}\left( \frac {\sqrt {3x^2+2x-1}}{\sqrt{3}} + x\right) \right] + C$$
$$= 2\tan^{-1} \left( \sqrt{3x^2+2x-1} + \sqrt{3}x \right) + C$$
$$ \int \frac 1 {x\sqrt{3x^2+2x-1}}dx$$
Using the below substitution:
$$3x^2+2x-1=3\left( t-x \right)^2$$
$$3x^2+2x-1=3t^2-6tx+3x^2$$
$$6tx+2x=3t^2+1$$
$$x=\frac {3t^2+1}{6t+2}$$
The derivative of ##x## with respect to ##t## is:
$$\frac {dx}{dt} = \frac {6t \left( 6t+2 \right) - 6 \left( 3t^2+1 \right)} {\left( 6t+2 \right)^2} = \frac {36t^2+12t-18t^2-6} {\left( 6t+2 \right)^2}$$
$$dx = \frac {6 \left( 3t^2+2t-1 \right)} {\left( 6t+2 \right)^2}dt$$
Also, to find the value of ##t##:
$$3x^2+2x-1=3\left( t-x \right)^2$$
$$\sqrt {3x^2+2x-1}=\sqrt{3}\left( t-x \right)$$
$$t= \frac {\sqrt {3x^2+2x-1}}{\sqrt{3}} + x$$
To find the value of ##\sqrt {3x^2+2x-1}## in terms of ##t##:
$$\sqrt {3x^2+2x-1}=\sqrt{3}\left( t-x \right)$$
substituting for ##x## with the value derived above:
$$\sqrt {3x^2+2x-1}=\sqrt{3}\left( t-\frac {3t^2+1}{6t+2} \right)=\sqrt{3}\left( \frac {6t^2+2t-3t^2-1}{6t+2} \right)$$
$$\sqrt {3x^2+2x-1}=\sqrt{3}~ \frac {3t^2+2t-1}{6t+2} $$
Substituting back into the original integral:
$$ \int \frac 1 {x\sqrt{3x^2+2x-1}}dx = \int \frac {\frac {6 \left( 3t^2+2t-1 \right)} {\left( 6t+2 \right)^2}}{\frac {3t^2+1}{6t+2} \sqrt{3}~ \frac {3t^2+2t-1}{6t+2}}dt= \frac6{\sqrt{3}}\int\frac1{3t^2+1}dt $$
$$= \frac2{\sqrt{3}}\int\frac1{t^2+ \frac13}dt = \frac2{\sqrt{3}}\sqrt{3} \tan^{-1} \left(\sqrt{3} t\right) + C$$
Substituting back for ##t## with ##x##:
$$= 2\tan^{-1} \left[ \sqrt{3}\left( \frac {\sqrt {3x^2+2x-1}}{\sqrt{3}} + x\right) \right] + C$$
$$= 2\tan^{-1} \left( \sqrt{3x^2+2x-1} + \sqrt{3}x \right) + C$$
Last edited: