- #1
Rorschach
- 10
- 0
Suppose we have the matrix $ \mathbf{N} = \begin{bmatrix} 4 & -2 \\ -2 & 1 \end{bmatrix}$ and $\mathbf{X} = \begin{bmatrix}x \\ y \end{bmatrix}$. I want to solve $\displaystyle \frac{d\mathbf{X}}{dt} = \mathbf{NX}$.
The eigenvalues of the matrix are $\lambda_1, \lambda_2 = 0,5$ and eigenvectors are $v_1 = (1,2)^t$ and $v_2 = (2, 1)^t$.
So I thought the solution would be $\mathbf{X} = c_1 (1,2)^t + c_2(2,1)^{t}e^{5t}$. But apparently this is wrong? Why?
P.S. the t on the vectors denotes transpose, not to be confused with the t on the exponential.
The eigenvalues of the matrix are $\lambda_1, \lambda_2 = 0,5$ and eigenvectors are $v_1 = (1,2)^t$ and $v_2 = (2, 1)^t$.
So I thought the solution would be $\mathbf{X} = c_1 (1,2)^t + c_2(2,1)^{t}e^{5t}$. But apparently this is wrong? Why?
P.S. the t on the vectors denotes transpose, not to be confused with the t on the exponential.