- #1
ineedhelpnow
- 651
- 0
did i do these two questions right?
#1
$y'=xe^{- \sin\left({x}\right)}-y \cos\left({x}\right)$
$y'+y \cos\left({x}\right) = xe^{-\sin\left({x}\right)}$$I(x)=e^{\int \ \cos\left({x}\right)dx}$
$\int \ \cos\left({x}\right)dx=\sin\left({x}\right)=e^{\sin\left({x}\right)}$$y'e^{\sin\left({x}\right)}+y \cos\left({x}\right)*e^{\sin\left({x}\right)}=xe^{-\sin\left({x}\right)}*e^{\sin\left({x}\right)}$
$y'e^{\sin\left({x}\right)}+y \cos\left({x}\right)*e^{\sin\left({x}\right)}=x$
$(ye^{\sin\left({x}\right)})'=x$
$ye^{\sin\left({x}\right)}=\int \ x dx$
$ye^{\sin\left({x}\right)}= \frac{x^2}{2}+C$
$y= \frac{x^2e ^{\sin\left({x}\right)}}{2}+Ce^{-\sin\left({x}\right)}$
#2
$\frac{du}{dt}=\frac{2t+sec^2t}{2u}$ and $u(0)=4$
$2u du = 2t+ sec^2t dt$
$\int \ 2u du=\int \ (2t+ sec^2t) dt$
$\frac{2u^3}{3}=t^2+\tan\left({t}\right)+C$
$u=\sqrt[3]{\frac{3(t^2+\tan\left({t}\right)+C)}{2}}$
now $u(0)=4:$
$4=(\frac{3(0^2+\tan\left({0}\right)+C)}{2})^{1/3}$
$4=(\frac{3C}{2})^{1/3}$
$4^3=\frac{3C}{2}$
$128=3C$
$C=\frac{128}{3}$$u=(\frac{3(t^2+\tan\left({t}\right)+\frac{128}{3})}{2})^{1/3}$
#1
$y'=xe^{- \sin\left({x}\right)}-y \cos\left({x}\right)$
$y'+y \cos\left({x}\right) = xe^{-\sin\left({x}\right)}$$I(x)=e^{\int \ \cos\left({x}\right)dx}$
$\int \ \cos\left({x}\right)dx=\sin\left({x}\right)=e^{\sin\left({x}\right)}$$y'e^{\sin\left({x}\right)}+y \cos\left({x}\right)*e^{\sin\left({x}\right)}=xe^{-\sin\left({x}\right)}*e^{\sin\left({x}\right)}$
$y'e^{\sin\left({x}\right)}+y \cos\left({x}\right)*e^{\sin\left({x}\right)}=x$
$(ye^{\sin\left({x}\right)})'=x$
$ye^{\sin\left({x}\right)}=\int \ x dx$
$ye^{\sin\left({x}\right)}= \frac{x^2}{2}+C$
$y= \frac{x^2e ^{\sin\left({x}\right)}}{2}+Ce^{-\sin\left({x}\right)}$
#2
$\frac{du}{dt}=\frac{2t+sec^2t}{2u}$ and $u(0)=4$
$2u du = 2t+ sec^2t dt$
$\int \ 2u du=\int \ (2t+ sec^2t) dt$
$\frac{2u^3}{3}=t^2+\tan\left({t}\right)+C$
$u=\sqrt[3]{\frac{3(t^2+\tan\left({t}\right)+C)}{2}}$
now $u(0)=4:$
$4=(\frac{3(0^2+\tan\left({0}\right)+C)}{2})^{1/3}$
$4=(\frac{3C}{2})^{1/3}$
$4^3=\frac{3C}{2}$
$128=3C$
$C=\frac{128}{3}$$u=(\frac{3(t^2+\tan\left({t}\right)+\frac{128}{3})}{2})^{1/3}$