- #1
mathi85
- 41
- 0
Hi!
I would like to ask anyone with some spare time to check my assignment questions. Last time I was asked to post one task at a time so I will.
Thank you in advance for your time.
Task 5:
Find the particular solution of the following differential equations:
a) 12(d2y/dx2)-3y=0
given that: x=0, y=3 and (dy/dx)=0.5
b) (d2y/dx2)+2(dy/dx)+2y=10ex
given that: x=0, y=0 and (dy/dx)=1
Solution:
a)
12(d2y/dx2)-3y=0 /:12
(d2y/dx2)-(1/4)y=0
m2=n2
m=+/-n
∴y=Aenx+Be-nx
or y=Acosh(nx)+Bsinh(nx)
m2=1/4
∴m=+/-√(1/4)=+/-(1/2)
y=Acosh[(1/2)x]+Bsinh[(1/2)x]
3=Acosh[0]+Bsinh[0]
3=A(e0+e0/2)+B(e0-e0/2)
A=3
dy/dx=Asinh(0)+Bcosh(0)
B=1/2
Solution
b)
d2y/dx2+2(dy/dx)+2y=10ex
m2+2m+2=0
∴m=-1+/-j
CF:
u=e-x{Acos(x)+Bsin(x)}
PI:
v=pex
v'=pex
v''=pex
pex+2pex+2pex=10ex
5pex=10ex /:5ex
p=10ex/5ex=2
v=2ex
GS:
y=e-x{Acos(x)+Bsin(x)}+2ex [1]
dy/dx=e-x{-Asin(x)+Bcos(x)}-e-x{Acos(x)+Bsin(x)}+2ex [2]
Sub into [1]
0=e0{Acos(0)+Bsin(0)}+2e0
A=-2
Sub into [2]
1=e0{2sin(0)+Bcos(0)}-e0{2cos(0)+Bsin(0)}+2e0
1=B-2+2
B=1
PS:
y=e-x{-2cos(x)+sin(x)}+2ex
I would like to ask anyone with some spare time to check my assignment questions. Last time I was asked to post one task at a time so I will.
Thank you in advance for your time.
Task 5:
Find the particular solution of the following differential equations:
a) 12(d2y/dx2)-3y=0
given that: x=0, y=3 and (dy/dx)=0.5
b) (d2y/dx2)+2(dy/dx)+2y=10ex
given that: x=0, y=0 and (dy/dx)=1
Solution:
a)
12(d2y/dx2)-3y=0 /:12
(d2y/dx2)-(1/4)y=0
m2=n2
m=+/-n
∴y=Aenx+Be-nx
or y=Acosh(nx)+Bsinh(nx)
m2=1/4
∴m=+/-√(1/4)=+/-(1/2)
y=Acosh[(1/2)x]+Bsinh[(1/2)x]
3=Acosh[0]+Bsinh[0]
3=A(e0+e0/2)+B(e0-e0/2)
A=3
dy/dx=Asinh(0)+Bcosh(0)
B=1/2
Solution
b)
d2y/dx2+2(dy/dx)+2y=10ex
m2+2m+2=0
∴m=-1+/-j
CF:
u=e-x{Acos(x)+Bsin(x)}
PI:
v=pex
v'=pex
v''=pex
pex+2pex+2pex=10ex
5pex=10ex /:5ex
p=10ex/5ex=2
v=2ex
GS:
y=e-x{Acos(x)+Bsin(x)}+2ex [1]
dy/dx=e-x{-Asin(x)+Bcos(x)}-e-x{Acos(x)+Bsin(x)}+2ex [2]
Sub into [1]
0=e0{Acos(0)+Bsin(0)}+2e0
A=-2
Sub into [2]
1=e0{2sin(0)+Bcos(0)}-e0{2cos(0)+Bsin(0)}+2e0
1=B-2+2
B=1
PS:
y=e-x{-2cos(x)+sin(x)}+2ex
Last edited: