- #1
namegoeshere
- 6
- 0
Homework Statement
Find the general solution and any singular solutions to [itex](2xy^3+4x)y'=x^2y^2+y^2[/itex].
Homework Equations
The Attempt at a Solution
[itex]2x(y^3+2)y'=y^2(x^2+1)[/itex]
[itex]\int\frac{y^3+2}{y^2}\,dy=\int\frac{x^2+1}{2x}\,dx[/itex]
[itex]\frac{y^3-4}{2y}=\frac{x^2+2\ln x}{4}+C[/itex]
[itex]\int\frac{y^3+2}{y^2}\,dy=\int\frac{x^2+1}{2x}\,dx[/itex]
[itex]\frac{y^3-4}{2y}=\frac{x^2+2\ln x}{4}+C[/itex]
Is this correct?
To find the singular solution, do I set [itex]y'=0[/itex] and see if its solutions fit into the general solution? i.e.
[itex]y'=\frac{x^2y^2+y^2}{2x^3+4x}=0 \Rightarrow y=0[/itex]
Which in this example does not fit into the general solution since the left side becomes [itex]\frac{(0)^3-4}{2(0)}[/itex]. Therefore [itex]y=0[/itex] is a singular solution?
Last edited: