- #1
Harambe1
- 5
- 0
A one-dimensional dynamical system is given by
$x′ = f(x), t \in [0,+\infty)$,
where $f : \mathbb{R} \to \mathbb{R}$ is the smooth function defined as follows:
$$f(x) = \begin{cases}
x^4 \sin \left(\frac{1}{x}\right) & x \neq 0\\ 0 & x = 0.
\end{cases}.$$
Find all the equilibrium points and determine the stability properties of each equilibrium point.
I've managed to find all the equilibrium points and their stability properties (although using the derivative test I'm not sure if less than zero implies 'stable' or 'asymtopically stable') with the exception of zero. I'm struggling to formally prove its stability using the definition:
The equilibrium point $p \in \mathbb{R}$ is stable if for all $\varepsilon > 0$ there exists a $\delta > 0$ such that $\|x(t)-p\| \leq \delta$ whenever $\|x(t)-p\| \leq \varepsilon$ for all $t \geq t_0 \geq 0$.
I'm not really sure where to start with choosing epsilon or delta or how to use these. Thanks for any tips.
$x′ = f(x), t \in [0,+\infty)$,
where $f : \mathbb{R} \to \mathbb{R}$ is the smooth function defined as follows:
$$f(x) = \begin{cases}
x^4 \sin \left(\frac{1}{x}\right) & x \neq 0\\ 0 & x = 0.
\end{cases}.$$
Find all the equilibrium points and determine the stability properties of each equilibrium point.
I've managed to find all the equilibrium points and their stability properties (although using the derivative test I'm not sure if less than zero implies 'stable' or 'asymtopically stable') with the exception of zero. I'm struggling to formally prove its stability using the definition:
The equilibrium point $p \in \mathbb{R}$ is stable if for all $\varepsilon > 0$ there exists a $\delta > 0$ such that $\|x(t)-p\| \leq \delta$ whenever $\|x(t)-p\| \leq \varepsilon$ for all $t \geq t_0 \geq 0$.
I'm not really sure where to start with choosing epsilon or delta or how to use these. Thanks for any tips.