- #1
Karnage1993
- 133
- 1
1 & 3
I have this differential form:
##\omega = F_1 dx + F_2 dy + F_3 dz##
And I concluded that ##\omega## is closed because I calculated the partials and found out that ##\displaystyle \frac{\partial F_i}{\partial x_j} = \frac{\partial F_j}{\partial x_i}##.
Also, ##F_1## contains only ##x,y## terms, ##F_2## contains ##x,y,z## terms and ##F_3## only ##y,z## terms.
So according to an equation from class, the Domain of ##\omega## = Domains of ##F_1 \cap F_2 \cap F_3 = \mathbb{R}^2 \cap \mathbb{R}^3 \cap \mathbb{R}^2 = \mathbb{R}^2##.
Here's where I'm confused. How is the domain of ##\omega = \mathbb{R}^2##? The differential form contains all 3 parameters so I don't see how it can be. Also, would the ##g## also have domain ##\mathbb{R}^2##? This domain problem is preventing me from concluding that ##\omega## is exact. Once I figure out it's exact, then I can carry out the computations to find ##g(x,y,z)##.
Definition of exact is:
Let ##\omega## be a first order differential form in ##\mathbb{R}^n##. If ##\omega = dg##, for some ##g : \mathbb{R}^n \to \mathbb{R}##, then ##\omega## is said to be exact.
exact ##\Rightarrow## closed
I have this differential form:
##\omega = F_1 dx + F_2 dy + F_3 dz##
And I concluded that ##\omega## is closed because I calculated the partials and found out that ##\displaystyle \frac{\partial F_i}{\partial x_j} = \frac{\partial F_j}{\partial x_i}##.
Also, ##F_1## contains only ##x,y## terms, ##F_2## contains ##x,y,z## terms and ##F_3## only ##y,z## terms.
So according to an equation from class, the Domain of ##\omega## = Domains of ##F_1 \cap F_2 \cap F_3 = \mathbb{R}^2 \cap \mathbb{R}^3 \cap \mathbb{R}^2 = \mathbb{R}^2##.
Here's where I'm confused. How is the domain of ##\omega = \mathbb{R}^2##? The differential form contains all 3 parameters so I don't see how it can be. Also, would the ##g## also have domain ##\mathbb{R}^2##? This domain problem is preventing me from concluding that ##\omega## is exact. Once I figure out it's exact, then I can carry out the computations to find ##g(x,y,z)##.
Homework Equations
Definition of exact is:
Let ##\omega## be a first order differential form in ##\mathbb{R}^n##. If ##\omega = dg##, for some ##g : \mathbb{R}^n \to \mathbb{R}##, then ##\omega## is said to be exact.
exact ##\Rightarrow## closed