- #1
vickyr
- 1
- 0
Question:
Evaluate the surface integral
$$J = 2xzdy \land dz+2yzdz \land dx-{z}^{2}dx \land dy$$
where \(\displaystyle S \subset {\Bbb{R}}^{3}\) is the rectangle parametrised by:
$$x(u,v) = 1-u,\ y(u,v) = u,\ z(u,v) = v,\ \ 0\le u, v \le 1$$
so far I have:
\begin{array}{}x = u\cos v, &dx = \cos v\, du - u\sin v\, du \\
y = u\sin v, &dy = u\cos v\, dv + \sin v\, du \\
z = v, &dz = dv\end{array}
The next part requires me to find
\begin{array}{}\d{x}{u} du; &\d{x}{v} dv \\
\d{y}{u} du; &\d{y}{v} dv \\
\d{z}{u} du; &\d{z}{v} dv\end{array}
but I have no idea how to do this, please help!
Evaluate the surface integral
$$J = 2xzdy \land dz+2yzdz \land dx-{z}^{2}dx \land dy$$
where \(\displaystyle S \subset {\Bbb{R}}^{3}\) is the rectangle parametrised by:
$$x(u,v) = 1-u,\ y(u,v) = u,\ z(u,v) = v,\ \ 0\le u, v \le 1$$
so far I have:
\begin{array}{}x = u\cos v, &dx = \cos v\, du - u\sin v\, du \\
y = u\sin v, &dy = u\cos v\, dv + \sin v\, du \\
z = v, &dz = dv\end{array}
The next part requires me to find
\begin{array}{}\d{x}{u} du; &\d{x}{v} dv \\
\d{y}{u} du; &\d{y}{v} dv \\
\d{z}{u} du; &\d{z}{v} dv\end{array}
but I have no idea how to do this, please help!
Last edited by a moderator: