- #1
TimeRip496
- 254
- 5
Does $$ ∅*(\frac{d}{dξ})=∅*(\frac{d1}{dξ}) $$?
If is true,
Does multiplying a function and a derivative equals to the derivative of that function? For e.g. $$ ∅*(\frac{d}{dξ})=\frac{d∅}{dξ} $$ where ∅ is a function of ξ
But isn't it supposed to be like this(based on the product rule), $$ ∅*(\frac{d}{dξ}) = ∅*(\frac{d1}{dξ}) = \frac{d}{dξ}*∅-1*\frac{d∅}{dξ} $$ ?
What if ∅ is a constant or is not a function of ξ?
If is true,
Does multiplying a function and a derivative equals to the derivative of that function? For e.g. $$ ∅*(\frac{d}{dξ})=\frac{d∅}{dξ} $$ where ∅ is a function of ξ
But isn't it supposed to be like this(based on the product rule), $$ ∅*(\frac{d}{dξ}) = ∅*(\frac{d1}{dξ}) = \frac{d}{dξ}*∅-1*\frac{d∅}{dξ} $$ ?
What if ∅ is a constant or is not a function of ξ?