- #1
John O' Meara
- 330
- 0
Given that [tex] \frac{dx}{dy} = (\frac{dy}{dx})^{-1}\\ [/tex], differentiate throughout with respect to x and show that [tex] \frac{d^2x}{dy^2} = \frac{- \frac{d^2y}{dx^2}}{(\frac{dy}{dx})^3}\\[/tex].
An attempt: [tex] \frac{d^2 x}{dx dy} = \frac{d (\frac{dy}{dx})^{-1}}{dx} \\ [/tex].
I need help to get me started. Thanks for the help.
An attempt: [tex] \frac{d^2 x}{dx dy} = \frac{d (\frac{dy}{dx})^{-1}}{dx} \\ [/tex].
I need help to get me started. Thanks for the help.