- #1
Dustinsfl
- 2,281
- 5
$\mathcal{E} = \frac{1}{2}m\dot{x} + \frac{1}{2}kx^2$
The derivative is
$$
\frac{d\mathcal{E}}{dt} = \frac{1}{2}m\ddot{x} + kx\dot{x}
$$
but the solution is suppose to be
$$
\frac{d\mathcal{E}}{dt} = \dot{x}(m\ddot{x} + kx).
$$
How?
The derivative is
$$
\frac{d\mathcal{E}}{dt} = \frac{1}{2}m\ddot{x} + kx\dot{x}
$$
but the solution is suppose to be
$$
\frac{d\mathcal{E}}{dt} = \dot{x}(m\ddot{x} + kx).
$$
How?