- #1
courtrigrad
- 1,236
- 2
Hello all
If [tex] y = e^3^\ln^(x^2) [/tex] find [tex] \frac {dy}{dx} [/tex]
So [tex] \frac {dy}{dx} =(3 (\frac {1}{x^2}) \* 2x e^3^\ln^(x^2) [/tex]
So the simplified answer is: [tex] \frac {6}{x} e^3^\ln^(x^2) [/tex]
Is this correct? IS there any other way of expressing the answer?
Thanks
If [tex] y = e^3^\ln^(x^2) [/tex] find [tex] \frac {dy}{dx} [/tex]
So [tex] \frac {dy}{dx} =(3 (\frac {1}{x^2}) \* 2x e^3^\ln^(x^2) [/tex]
So the simplified answer is: [tex] \frac {6}{x} e^3^\ln^(x^2) [/tex]
Is this correct? IS there any other way of expressing the answer?
Thanks