- #1
QuarkCharmer
- 1,051
- 3
Homework Statement
[tex]\int_{-1}^{0} \frac{e^{\frac{1}{x}}}{x^{3}}dx[/tex]
Solve the integral and determine if it converges/diverges ect.
Homework Equations
The Attempt at a Solution
[tex]\int_{-1}^{0} \frac{e^{\frac{1}{x}}}{x^{3}}dx[/tex]
[tex]\lim_{t \to 0}\int_{-1}^{t} \frac{e^{\frac{1}{x}}}{x^{3}}dx[/tex]
[itex]u = \frac{1}{x}[/itex]
[itex]du = \frac{1}{x^{2}}dx[/itex]
[tex]\lim_{t \to 0}\int_{-1}^{\frac{1}{t}} \frac{e^{u}(-x^{2})}{x^{3}}du[/tex]
[tex]\lim_{t \to 0}\int_{-1}^{\frac{1}{t}} \frac{-e^{u}}{x} du[/tex]
[tex]x = \frac{1}{u}[/tex]
[tex]\lim_{t \to 0}\int_{-1}^{\frac{1}{t}} \frac{-e^{u}}{\frac{1}{u}} du[/tex]
[tex]\lim_{t \to 0} \int_{-1}^{\frac{1}{t}} -e^{u}u du[/tex]
[itex]v = u[/itex]
[itex]dv = du[/itex]
[itex]w = -e^{u}[/itex]
[itex]dw = -e^{u}du[/itex]
[tex]\lim_{t \to 0} (-e^{u}u)_{-1}^{\frac{1}{t}} - \int_{-1}^{\frac{1}{t}} -e^{u}du[/tex]
[tex]\lim_{t \to 0} (\frac{-e^{\frac{1}{t}}}{t} + e^{-1}(-1)) - (-e^{\frac{1}{t}}+e^{-1})[/tex]
[tex]\lim_{t \to 0} (\frac{-e^{\frac{1}{t}}}{t}-e^{-1}) + e^{\frac{1}{t}}-e^{-1}[/tex]
[tex]\lim_{t \to 0} (e^{\frac{1}{t}}-\frac{e^{\frac{1}{t}}}{t}-2e^{-1})[/tex]
And now I can't solve this limit. What am I doing wrong here? I put the limit into my TI-89 and as I thought it is undefined. I know the solution is that it converges to [itex]\frac{-2}{e}[/itex] but I can't seem to get there.
Last edited: