- #1
tsienni
- 1
- 0
I understand that a wave is most often oscillatory in character. That said, it does not have to be the case, for a wave is simply not the same as an oscillation: the former refers to a spatial pattern whereas the latter to a variation in time. We may think of a wave formed by an infinite number of motions (typically oscillatory), one at every point in space and all generally different. Now, for a non-oscillatory wave, there's just a single big disturbance that passes anyone point for merely a short time.
Examples of a non-oscillatory wave:
a) the wave thrown off by the bow of a speedboat
b) the sonic boom from a supersonic plane
c) the sound wave emitted from a single gunshot.
If you take a snapshot at any given time, a non-oscillatory wave pattern consists of only one localized disturbance plus tiny motions seen anywhere else. How could the wave, then, be properly propagated in time? A moment later when you do an observation yet again, you see the point where the last disturbance takes place is now virtually motionless. How could this happen at all?
Examples of a non-oscillatory wave:
a) the wave thrown off by the bow of a speedboat
b) the sonic boom from a supersonic plane
c) the sound wave emitted from a single gunshot.
If you take a snapshot at any given time, a non-oscillatory wave pattern consists of only one localized disturbance plus tiny motions seen anywhere else. How could the wave, then, be properly propagated in time? A moment later when you do an observation yet again, you see the point where the last disturbance takes place is now virtually motionless. How could this happen at all?
Last edited: