- #1
xaos
- 179
- 4
i attempted the first 100 pages of Walter Poor's Differential Geometric Structures, taking me about two months, and the most difficulty i had was trying to understand the utility(?) of the pullback bundle. its possible that its just a very difficult subject and the only thing that's needed is some time to grasp the ideas, or at least the notation, but its still a very slow subject and i wonder what prerequisites are needed to make it go smoother. it takes a half page just to set up every new idea.
he uses the idea in several constructions and several commutation diagram isomorphisms, but i still don't see their full nature. the only intuition i have on the idea is to see it as a kind of 'pre image' of the fibre bundle structure. for example, the structure of a cube might be seen as a pre image of a family of tangent planes along a curve inside a manifold. but why not just do this (a mapping between preimage and image), instead of constructing a commutation diagram and then building catagorical isomorphisms between the diagrams? or am i asking the wrong question? it seems strange that wikipedia describes this stuff way too lightly, as if its such constructions are self evident. thankyou for any help.
he uses the idea in several constructions and several commutation diagram isomorphisms, but i still don't see their full nature. the only intuition i have on the idea is to see it as a kind of 'pre image' of the fibre bundle structure. for example, the structure of a cube might be seen as a pre image of a family of tangent planes along a curve inside a manifold. but why not just do this (a mapping between preimage and image), instead of constructing a commutation diagram and then building catagorical isomorphisms between the diagrams? or am i asking the wrong question? it seems strange that wikipedia describes this stuff way too lightly, as if its such constructions are self evident. thankyou for any help.