Diffraction from a loud speaker

In summary, the diffraction angle for a sound exiting a diffraction horn loudspeaker outside on a pole is 11° at a temperature of 273 K. When the temperature increases to 307 K, the diffraction angle can be calculated using the equation sinθ_f = sinθ_i * sqrt(T_f/T_i), where θ_f is the diffraction angle at the new temperature and θ_i is the initial diffraction angle. This is due to the fact that the frequency of the sound wave does not change with temperature, but the wavelength does, resulting in a change in the diffraction angle.
  • #1
pmd28
64
0

Homework Statement


Sound exits a diffraction horn loudspeaker through a rectangular opening like a small doorway. Such a loudspeaker is mounted outside on a pole. In winter, when the temperature is 273 K, the diffraction angle θ has a value of 11°. What is the diffraction angle for the same sound on a summer day when the temperature is 307 K?


Homework Equations


v=sqrt([itex]\gamma[/itex]kT/m)
v=[itex]\lambda[/itex]f
sin[itex]\theta[/itex]=[itex]\lambda[/itex]/D


The Attempt at a Solution


I can't seem to relate these equations. I know that [itex]\gamma[/itex]k/m is constant for both T and I also know that v increases with temperature but I don't understand how that affects lambda and frequency.
 
Physics news on Phys.org
  • #2
The frequency of a sound wave is determined by the frequency of vibration of the source of sound (the speaker in this case). So, changing the temperature does not change the frequency of the sound if you assume the speaker vibrates at the same frequency for both temperatures.

A good way to approach this problem is to consider the ratio [itex]\frac{sin\theta_f}{sin\theta_i}[/itex] where the subscripts refer to the initial and final temperatures.
 
  • #3
So I set that ratio equal to the ratio of vf/vi and then canceled out sqrt([itex]\gamma[/itex]k/m) because it is constant in both cases therefore the ratio of Sinfθ/Siniθ is equal to sqrt(Tf)/sqrt(Ti) It was correct.
 

FAQ: Diffraction from a loud speaker

1. What is diffraction from a loud speaker?

Diffraction from a loud speaker is the phenomenon of sound waves bending and spreading out as they pass through an opening or around an obstacle, causing changes in intensity and direction of the sound.

2. How does diffraction affect the sound from a loud speaker?

Diffraction can cause the sound from a loud speaker to become less focused and more spread out, resulting in a decrease in sound intensity and clarity at certain angles.

3. Can diffraction be controlled or minimized in loud speakers?

Yes, diffraction can be controlled or minimized through careful design and placement of the loud speaker. This can include using materials that absorb or redirect sound waves, as well as positioning the speaker in an optimal location for sound projection.

4. What are some common causes of diffraction in loud speakers?

Some common causes of diffraction in loud speakers include the shape and size of the speaker enclosure, the materials used in construction, and the placement of the speaker in relation to obstacles or openings in the surrounding environment.

5. How does diffraction impact the overall sound quality of a loud speaker?

Diffraction can have both positive and negative impacts on the overall sound quality of a loud speaker. While it can cause changes in sound intensity and direction, it can also create a more natural and immersive listening experience for the audience.

Back
Top