- #1
Dustinsfl
- 2,281
- 5
Show the diffusion equation is invariant to a linear transformation in the temperature field
$$
\overline{T} = \alpha T + \beta
$$
Since $\overline{T} = \alpha T + \beta$, the partial derivatives are
\begin{alignat*}{3}
\overline{T}_t & = & \alpha T_t\\
\overline{T}_{xx} & = & \alpha T_{xx}
\end{alignat*}
So $T_t = \frac{1}{\alpha}\overline{T}_t$ and $T_{xx} = \frac{1}{\alpha}\overline{T}_{xx}$.
The diffusion equation is
$$
\frac{1}{\alpha}T_t = T_{xx}.
$$
By substitution, we obtain
$$
\frac{1}{\alpha}\overline{T}_t = \overline{T}_{xx}.
$$
Correct?
$$
\overline{T} = \alpha T + \beta
$$
Since $\overline{T} = \alpha T + \beta$, the partial derivatives are
\begin{alignat*}{3}
\overline{T}_t & = & \alpha T_t\\
\overline{T}_{xx} & = & \alpha T_{xx}
\end{alignat*}
So $T_t = \frac{1}{\alpha}\overline{T}_t$ and $T_{xx} = \frac{1}{\alpha}\overline{T}_{xx}$.
The diffusion equation is
$$
\frac{1}{\alpha}T_t = T_{xx}.
$$
By substitution, we obtain
$$
\frac{1}{\alpha}\overline{T}_t = \overline{T}_{xx}.
$$
Correct?