- #1
PhysicsRock
- 117
- 18
- Homework Statement
- Given the charge distribution ##\rho(x,y,z) = \frac{Q}{2\pi R^2} \delta(\sqrt{x^2 + y^2 + z^2}-R) [\Theta(z) - \Theta(-z)]## calculate the dipole moment using cartesian coordinates.
- Relevant Equations
- ##\vec{p} = \int d^3x \vec{x} \rho(\vec{x})##.
I have come up with a solution, however, I'm not sure whether I'm correct. A fellow student of mine has a different result. I'm gonna show my solution, and hopefully one of you can confirm my result or tell me what I did wrong.
$$
\begin{align}
p_z &= \int d^3x z \rho(\vec{x}) \notag \\
&= \frac{Q}{2\pi R^2} \int d^3x z \delta(\sqrt{x^2 + y^2 + z^2} - R) \left[ \Theta(z) - \Theta(-z) \right] \notag \\
&= \frac{Q}{2\pi R^2} \left[ \int_{z>0} d^3x z \delta(\sqrt{x^2 + y^2 + z^2} - R) - \int_{z<0} d^3x z \delta(\sqrt{x^2 + y^2 + z^2} - R) \right] \notag \\
&= \frac{Q}{\pi R^2} \int_{z>0} d^3x z \delta(\sqrt{x^2 + y^2 + z^2} - R) \notag \\
&= \frac{Q}{\pi R^2} \int_{x,y} \sqrt{R^2 - x^2 - y^2} dx dy \notag \\
&= \frac{Q}{\pi R^2} \int_{y} \int_{-\sqrt{R^2 - y^2}}^{+\sqrt{R^2 - y^2}} \sqrt{R^2 - x^2 - y^2} dx dy \notag \\
\text{Let } u^2 &= R^2 - y^2 \notag \\
\Rightarrow p_z &= \frac{Q}{\pi R^2} \int_y \int_{-\sqrt{R^2 - y^2}}^{+ \sqrt{R^2 - y^2}} \sqrt{u^2 - x^2} dx dy \notag \\
&= \frac{Q}{\pi R^2} \int_y \int_{-\sqrt{R^2 - y^2}}^{+\sqrt{R^2 - y^2}} u \sqrt{1 - \left( \frac{x}{u} \right)^2} dx dy \notag \\
\text{Let } \sin(\alpha) &= \frac{x}{u} \Leftrightarrow dx = u \cos(\alpha) d\alpha \notag \\
&= \frac{Q}{\pi R^2} \int_y u^2 \int_{\sin^{-1}(-\sqrt{R^2 - y^2}/u)}^{+ \sin^{-1}(\sqrt{R^2 - y^2}/u)} \sqrt{1 - \sin^2(\alpha)} \cos(\alpha) d\alpha \notag \\
&= \frac{Q}{\pi R^2} \int_y u^2 \int_{-\pi/2}^{+\pi/2} \cos^2(\alpha) d\alpha \notag \\
&= \frac{Q}{\pi R^2} \int_y \frac{\pi u^2}{2} dy \notag \\
&= \frac{Q}{2R^2} \int_y (R^2 - y^2) dy \notag \\
&= \frac{Q}{2R^2} \int_{-R}^{+R} (R^2 - y^2) dy \notag \\
&= \frac{Q}{2R^2} \left[ R^2 y - \frac{y^3}{3} \right]_{-R}^{+R} \notag \\
&= \frac{Q}{2R^2} \left( R^2 \cdot R - \frac{R^3}{3} - R^2 \cdot (-R) - \frac{R^3}{3} \right) \notag \\
&= \frac{Q}{2R^2} \cdot \frac{4R^3}{3} \notag \\
&= \frac{2QR}{3}. \notag
\end{align}
$$
Between the third and fourth line I used a substitution to make both integrals run within the same boundaries, thus allowing me to only calculate one integral. I'm also only stating the ##p_z##-component, because we think the dipole only has non-zero values in the ##z##-component, because the shift of charges only occurs along that axis, as seen from the charge distribution stated above. Please correct me if we're wrong here.
$$
\begin{align}
p_z &= \int d^3x z \rho(\vec{x}) \notag \\
&= \frac{Q}{2\pi R^2} \int d^3x z \delta(\sqrt{x^2 + y^2 + z^2} - R) \left[ \Theta(z) - \Theta(-z) \right] \notag \\
&= \frac{Q}{2\pi R^2} \left[ \int_{z>0} d^3x z \delta(\sqrt{x^2 + y^2 + z^2} - R) - \int_{z<0} d^3x z \delta(\sqrt{x^2 + y^2 + z^2} - R) \right] \notag \\
&= \frac{Q}{\pi R^2} \int_{z>0} d^3x z \delta(\sqrt{x^2 + y^2 + z^2} - R) \notag \\
&= \frac{Q}{\pi R^2} \int_{x,y} \sqrt{R^2 - x^2 - y^2} dx dy \notag \\
&= \frac{Q}{\pi R^2} \int_{y} \int_{-\sqrt{R^2 - y^2}}^{+\sqrt{R^2 - y^2}} \sqrt{R^2 - x^2 - y^2} dx dy \notag \\
\text{Let } u^2 &= R^2 - y^2 \notag \\
\Rightarrow p_z &= \frac{Q}{\pi R^2} \int_y \int_{-\sqrt{R^2 - y^2}}^{+ \sqrt{R^2 - y^2}} \sqrt{u^2 - x^2} dx dy \notag \\
&= \frac{Q}{\pi R^2} \int_y \int_{-\sqrt{R^2 - y^2}}^{+\sqrt{R^2 - y^2}} u \sqrt{1 - \left( \frac{x}{u} \right)^2} dx dy \notag \\
\text{Let } \sin(\alpha) &= \frac{x}{u} \Leftrightarrow dx = u \cos(\alpha) d\alpha \notag \\
&= \frac{Q}{\pi R^2} \int_y u^2 \int_{\sin^{-1}(-\sqrt{R^2 - y^2}/u)}^{+ \sin^{-1}(\sqrt{R^2 - y^2}/u)} \sqrt{1 - \sin^2(\alpha)} \cos(\alpha) d\alpha \notag \\
&= \frac{Q}{\pi R^2} \int_y u^2 \int_{-\pi/2}^{+\pi/2} \cos^2(\alpha) d\alpha \notag \\
&= \frac{Q}{\pi R^2} \int_y \frac{\pi u^2}{2} dy \notag \\
&= \frac{Q}{2R^2} \int_y (R^2 - y^2) dy \notag \\
&= \frac{Q}{2R^2} \int_{-R}^{+R} (R^2 - y^2) dy \notag \\
&= \frac{Q}{2R^2} \left[ R^2 y - \frac{y^3}{3} \right]_{-R}^{+R} \notag \\
&= \frac{Q}{2R^2} \left( R^2 \cdot R - \frac{R^3}{3} - R^2 \cdot (-R) - \frac{R^3}{3} \right) \notag \\
&= \frac{Q}{2R^2} \cdot \frac{4R^3}{3} \notag \\
&= \frac{2QR}{3}. \notag
\end{align}
$$
Between the third and fourth line I used a substitution to make both integrals run within the same boundaries, thus allowing me to only calculate one integral. I'm also only stating the ##p_z##-component, because we think the dipole only has non-zero values in the ##z##-component, because the shift of charges only occurs along that axis, as seen from the charge distribution stated above. Please correct me if we're wrong here.