MHB Dirac Delta and Fourier Series

AI Thread Summary
A beam of length L with fixed ends experiences a concentrated force P at its center, leading to the differential equation d^4y/dx^4 = (1/EI)q(x), where q(x) is defined as P times the Dirac delta function. The Fourier sine series representation of the beam's deflection y(x) is expressed as a sum of sine functions. By substituting the Dirac delta function into the Fourier series formula, the coefficients B_n are calculated, demonstrating the unique property of the delta function. This results in the equation δ(x - L/2) being expressed as a series involving sine functions. The discussion highlights the importance of correctly identifying f(x) as the Dirac delta function for accurate calculations.
rannasquaer
Messages
6
Reaction score
0
A beam of length L with fixed ends, has a concentrated force P applied in the center exactly in L / 2.

In the differential equation:

\[ \frac{d^4y(x)}{dx^4}=\frac{1}{\text{EI}}q(x) \]

In which

\[ q(x)= P \delta(x-\frac{L}{2}) \]

P represents an infinitely concentrated charge distribution

The problem can be solved through developments in Fourier sine series, suppose that

\[ y(x)=\sum_{n=1}^{\infty} b_n \sin (\frac{n \pi x}{\text{L}}) \]

Demonstrate and explain step by step to obtain the equation below

\[ \delta(x-\frac{\text{L}}{2})= \frac{2}{\text{L}} \sum_{n=1}^{\infty} \sin (\frac{n \pi}{2}) \sin (\frac{n \pi x}{\text{L}}) \]
 
Mathematics news on Phys.org
Hi rannasquaer, welcome to MHB!

The Fourier sine series says that we can write an odd function $f(x)$ with period $L$ as:
$$f(x)=\sum_{n=1}^\infty B_n \sin\frac{n\pi x}L\quad\text{with}\quad B_n = \frac 2L\int_0^L f(x) \sin\frac{n\pi x}L\,dx \quad\quad (1)$$

Substitute $f(x)=\delta(x-\frac L2)$ to find:
\[ B_n = \frac 2L\int_0^L \delta\big(x-\frac L2\big) \sin\frac{n\pi x}L\,dx \]

To evaluate this, we use the property of the Dirac $\delta$ function that if $a<c<b$ then $\int_a^b \delta(x-c)g(x)\,dx = g(c)$.
So
\[ B_n = \frac 2L\int_0^L \delta\big(x-\frac L2\big) \sin\big(\frac{n\pi x}L\big)\,dx = \frac 2L\, \sin\big(\frac{n\pi}L\frac L2\big) = \frac 2L\, \sin \frac{n\pi}2\]

Substitute in $(1)$ and find:
\[ \delta\big(x-\frac L2\big) = \sum_{n=1}^\infty \frac 2L\, \sin \frac{n\pi}2 \sin\frac{n\pi x}L \]
 
Last edited:
Thank you so much, I was having trouble understanding what to use as f(x), I thought I should use q(x), and everything was going wrong.

Thank you!
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top