- #1
Kontilera
- 179
- 24
Hello! I am currently reading the analysis of tensors and have now encountered the tensorproduct, [tex] \otimes [/tex].
I am wondering about the statement that every vector in: [tex]V \otimes W [/tex] (with the basis (v_i) and (w_i)) can be written as a linear combination of the basis: [tex]v_i \otimes w_i ,[/tex] but not in general as an element of the form:[tex] v \otimes w,[/tex] where w and v are elements i W and V.
Which elements can I not reach by the second way? If we set V and W to R^3 it looks like we are comparing a 6-dimensional space to a 9-dimensional space (true?), in that case does it have something to do with the symmetric or antisymmetric components of [tex]V \otimes W [/tex] that can not be reached by [tex] v \otimes w[/tex]?
I am thankful for all help possible. :)
Best Regards
Kontilera
I am wondering about the statement that every vector in: [tex]V \otimes W [/tex] (with the basis (v_i) and (w_i)) can be written as a linear combination of the basis: [tex]v_i \otimes w_i ,[/tex] but not in general as an element of the form:[tex] v \otimes w,[/tex] where w and v are elements i W and V.
Which elements can I not reach by the second way? If we set V and W to R^3 it looks like we are comparing a 6-dimensional space to a 9-dimensional space (true?), in that case does it have something to do with the symmetric or antisymmetric components of [tex]V \otimes W [/tex] that can not be reached by [tex] v \otimes w[/tex]?
I am thankful for all help possible. :)
Best Regards
Kontilera