- #1
kalish1
- 99
- 0
Let $x \in R - \{0\},$ where $R$ is a domain.
Define $T_x(M) = \{m \in M \ | \ x^n m=0 \ \ \mathrm{for \ some} \ n \in \mathbb{N}\}$ as the $x$-torsion of $M.$
I know that $T_x(M \oplus N) = T_x(M) \oplus T_x(N)$ for $R$-modules $M,N$ only if $R$ is a PID.
But I can't think of a counterexample for $R$ an integral domain.
Any ideas?
Define $T_x(M) = \{m \in M \ | \ x^n m=0 \ \ \mathrm{for \ some} \ n \in \mathbb{N}\}$ as the $x$-torsion of $M.$
I know that $T_x(M \oplus N) = T_x(M) \oplus T_x(N)$ for $R$-modules $M,N$ only if $R$ is a PID.
But I can't think of a counterexample for $R$ an integral domain.
Any ideas?