- #1
songoku
- 2,384
- 351
- Homework Statement
- Please see below
- Relevant Equations
- Partial Derivative
Direction derivative in the direction of unit vector u = <a, b, c>:
Du f(x,y,z) = fx (x,y,z) a + fy (x,y,z) b + fz (x, y, z)
I want to ask about the direction in which ##D_v## is zero at point (1, 2, 1)
My attempt:
$$w_x=yz+\frac{1}{x}$$
$$w_y=xz+\frac{1}{y}$$
$$w_z=xy+\frac{1}{z}$$
At point (1, 2, 1), the ##\nabla w=<3, \frac{3}{2}, 3>##
$$D_v w=0$$
$$\nabla w \cdot v=0$$
$$
\begin{pmatrix}
3 \\
\frac{3}{2} \\
3
\end{pmatrix}
\cdot
\begin{pmatrix}
p \\
q \\
r
\end{pmatrix}
=0
$$
$$3p+\frac{3}{2} q+3r=0$$
$$2p+q+2r=0$$
Another equation is ##p^2+q^2+r^2=1##
But I can't find ##p, q## and ##r## from these equations. Is my working wrong?
Thanks
Last edited: