- #1
pantboio
- 45
- 0
I'm looking for all functions $u$ harmonic in $S$ and continuous in $\overline S$ such that
$$u(a,y)=u(b,y)=0,\forall y$$
and
$$\lim_{|y|\rightarrow +\infty} u(x,y)=0$$
where $S$ is the strip $\{a<\operatorname{Re}(z)<b\}$
My strategy is the following. I know that if $g$ is continuous on $\partial D$, with $D$ the unit disc,then
\begin{equation*}
u(z)= \left\{
\begin{array}{}
\frac{1}{2\pi}\int_0^{2\pi}g(e^{i\theta}) \frac{1-|z|^2}{|e^{i\theta}-z|^2}d\theta& \text{if } z\in D,\\
g(z)& \text{if } z\in\partial D\\
\end{array} \right.
\end{equation*}
is harmonic in $D$, continuous in $\overline D$ and $u=g$ on $\partial D$.
So i find a conformal map $\phi$ from the strip to the unit disc and i look for harmonic functions in the disc that vanish on the boundary. But in this case $g$ is the function identically equal to 0, hence the only harmonic functions i find is the zero one. In all this i have the strong sensation to have missed something fundamental from the theory, but i don't know what. Can someone give me a suggestion?
$$u(a,y)=u(b,y)=0,\forall y$$
and
$$\lim_{|y|\rightarrow +\infty} u(x,y)=0$$
where $S$ is the strip $\{a<\operatorname{Re}(z)<b\}$
My strategy is the following. I know that if $g$ is continuous on $\partial D$, with $D$ the unit disc,then
\begin{equation*}
u(z)= \left\{
\begin{array}{}
\frac{1}{2\pi}\int_0^{2\pi}g(e^{i\theta}) \frac{1-|z|^2}{|e^{i\theta}-z|^2}d\theta& \text{if } z\in D,\\
g(z)& \text{if } z\in\partial D\\
\end{array} \right.
\end{equation*}
is harmonic in $D$, continuous in $\overline D$ and $u=g$ on $\partial D$.
So i find a conformal map $\phi$ from the strip to the unit disc and i look for harmonic functions in the disc that vanish on the boundary. But in this case $g$ is the function identically equal to 0, hence the only harmonic functions i find is the zero one. In all this i have the strong sensation to have missed something fundamental from the theory, but i don't know what. Can someone give me a suggestion?