- #1
alexfloo
- 192
- 0
Is there a real-valued function which is discontinuous everywhere, but which has a limit at every point in it's domain?
My intuition is that this couldn't occur because, if the limit exists at some x, then it must become "increasingly continuous" in the vicinity of x (otherwise we could find sequences to that point with different limits under that function). Then, we could perhaps conclude that f must be continuous in some neighborhood of x. This is of course not a formal proof, though, and I haven't been able to formalize it, hence my curiosity.
My intuition is that this couldn't occur because, if the limit exists at some x, then it must become "increasingly continuous" in the vicinity of x (otherwise we could find sequences to that point with different limits under that function). Then, we could perhaps conclude that f must be continuous in some neighborhood of x. This is of course not a formal proof, though, and I haven't been able to formalize it, hence my curiosity.